126 research outputs found

    Automated analysis of blood pressure measurements (Korotkov sound)

    Get PDF
    Automatic system for noninvasive measurements of arterial blood pressure is described. System uses Korotkov sound processor logic ratios to identify Korotkov sounds. Schematic diagram of system is provided to show components and method of operation

    Basic studies on delta wing flow modifications by means of apex fences

    Get PDF
    The effectiveness of apex fences on a 60-deg delta wing at low speeds was experimentally investigated. Resembling highly swept spoilers in appearance, the fences are designed to fold out of the wing apex region upper surface near the leading edges, where they generate a powerful vortex pair. The intense suction of the fence vortices augments lift in the apex region, the resulting positive pitching moment being utilized to trim trailing edge flaps for lift augmentation during approach and landing at relatively low angles of attack. The fences reduce the apex lift at high angles of attack, leading to a desirable nose-down moment. The above projected functions of the apex fence device were validated and quantified through low speed tunnel tests, comprising upper surface pressure surveys on a semispan model and balance measurements on a geometrically similar fully span wing/body configuration. Fence parameters such as area, shape, hinge position and deflection angle were investigated. Typical results are presented indicating the apex fence potential in controlling the longitudinal characteristics of a tail-less delta

    Investigation of the Vortex Tab

    Get PDF
    An investigation was made into the drag reduction capability of vortex tabs on delta wing vortex flaps. The vortex tab is an up-deflected leading edge portion of the vortex flap. Tab deflection augments vortex suction on the flap, thus improving its thrust, but the tab itself is drag producing. Whether a net improvement in the drag reduction can be obtained with vortex tabs, in comparison with plane vortex flaps of the same total area, was the objective of this investigation. Wind tunnel tests were conducted on two models, and analytical studies were performed on one of them using a free vortex sheet theory

    Recent extensions to the free-vortex-sheet theory for expanded convergence capability

    Get PDF
    A new version of the free vortex sheet formulation is presented which has greatly improved convergence characteristics for a broad range of geometries. The enhanced convergence properties were achieved largely with extended modeling capabilities of the leading edge vortex and the near field trailing wake. Results from the new code, designated FVS-1, are presented for a variety of configurations and flow conditions with emphasis on vortex flap applications

    Simulation model of a twin-tail, high performance airplane

    Get PDF
    The mathematical model and associated computer program to simulate a twin-tailed high performance fighter airplane (McDonnell Douglas F/A-18) are described. The simulation program is written in the Advanced Continuous Simulation Language. The simulation math model includes the nonlinear six degree-of-freedom rigid-body equations, an engine model, sensors, and first order actuators with rate and position limiting. A simplified form of the F/A-18 digital control laws (version 8.3.3) are implemented. The simulated control law includes only inner loop augmentation in the up and away flight mode. The aerodynamic forces and moments are calculated from a wind-tunnel-derived database using table look-ups with linear interpolation. The aerodynamic database has an angle-of-attack range of -10 to +90 and a sideslip range of -20 to +20 degrees. The effects of elastic deformation are incorporated in a quasi-static-elastic manner. Elastic degrees of freedom are not actively simulated. In the engine model, the throttle-commanded steady-state thrust level and the dynamic response characteristics of the engine are based on airflow rate as determined from a table look-up. Afterburner dynamics are switched in at a threshold based on the engine airflow and commanded thrust

    Apparatus and method for processing Korotkov sounds

    Get PDF
    A Korotkov sound processor, used in a noninvasive automatic blood measuring system where the brachial artery is occluded by an inflatable cuff, is disclosed. The Korotkoff sound associated with the systolic event is determined when the ratio of the absolute value of a voltage signal, representing Korotkov sounds in the range of 18 to 26 Hz to a maximum absolute peak value of the unfiltered signals, first equals or exceeds a value of 0.45. Korotkov sound associated with the diastolic event is determined when a ratio of the voltage signal of the Korotkov sounds in the range of 40 to 60 Hz to the absolute peak value of such signals within a single measurement cycle first falls below a value of 0.17. The processor signals the occurrence of the systolic and diastolic events and these signals can be used to control a recorder to record pressure values for these events

    A low speed wind tunnel investigation of Reynolds number effects on a 60-deg swept wing configuration with leading and trailing edge flaps

    Get PDF
    A low-speed wind tunnel test was performed to investigate Reynolds number effects on the aerodynamic characteristics of a supersonic cruise wing concept model with a 60-deg swept wing incorporating leading-edge and trailing-edge flap deflections. The Reynolds number ranged from 0.3 to 1.6 x 10 to the 6th, and corresponding Mach numbers from .05 to 0.3. The objective was to define a threshold Reynolds number above which the flap aerodynamics basically remained unchanged, and also to generate a data base useful for validating theoretical predictions for the Reynolds number effects on flap performance. This report documents the test procedures used and the basic data acquired in the investigation

    Responses of women to orthostatic and exercise stresses

    Get PDF
    The results are presented from a special physiological study of women at the Johnson Space Center in 1976 to 1977. Its purpose was to establish a large (98 subjects) database from normal working women. The data sets are medical historical, clinical, anthropometric, and stress response statistics useful for establishing medical criteria for selecting women astronauts. Stressors were lower body negative pressure and static standing (both orthostatic) and treadmill exercise (ergometric). Data shown are original individual values with analyses and subsets, and statistical summaries and correlations relating to human responses to microgravity. Similarities appear between the characteristics of women in this study and those of women astronauts currently flying in Shuttle crews

    Sensitivity Analysis of Detect and Avoid Well Clear Parameter Variations on UAS DAA Sensor Requirements

    Get PDF
    In support of NASAs Unmanned Aircraft Systems Integration in the National Airspace System project and RTCA Special Committee 228, an analysis has been performed to provide insight in to the trade space between detect and avoid (DAA) Well Clear definition threshold variations, which could affect DAA sensor range and alerting requirements

    Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and-Avoid System Performance Requirements

    Get PDF
    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will support UAS maneuver performance requirements development for integrating UAS in the NAS. The methods described are being used to help RTCA Special Committee 228 develop requirements
    • …
    corecore