692 research outputs found
The EMC Effect and High Momentum Nucleons in Nuclei
Recent developments in understanding the influence of the nucleus on
deep-inelastic structure functions, the EMC effect, are reviewed. A new data
base which expresses ratios of structure functions in terms of the Bjorken
variable is presented. Information about two-nucleon
short-range correlations from experiments is also discussed and the remarkable
linear relation between short-range correlations and teh EMC effect is
reviewed. A convolution model that relates the underlying source of the EMC
effect to modification of either the mean-field nucleons or the short-range
correlated nucleons is presented. It is shown that both approaches are equally
successful in describing the current EMC data.Comment: 31 pages, 11 figure
Short-Distance Structure of Nuclei
One of Jefferson Lab's original missions was to further our understanding of
the short-distance structure of nuclei. In particular, to understand what
happens when two or more nucleons within a nucleus have strongly overlapping
wave-functions; a phenomena commonly referred to as short-range correlations.
Herein, we review the results of the (e,e'), (e,e'p) and (e,e'pN) reactions
that have been used at Jefferson Lab to probe this short-distance structure as
well as provide an outlook for future experiments.Comment: 16 pages, 8 figures, for publication in Journal of Physics
Polarized light ions and spectator nucleon tagging at EIC
An Electron-Ion Collider (EIC) with suitable forward detection capabilities
would enable a unique experimental program of deep-inelastic scattering (DIS)
from polarized light nuclei (deuterium 2H, helium 3He) with spectator nucleon
tagging. Such measurements promise significant advances in several key areas of
nuclear physics and QCD: (a) neutron spin structure, by using polarized
deuterium and eliminating nuclear effects through on-shell extrapolation in the
spectator proton momentum; (b) quark/gluon structure of the bound nucleon at x
> 0.1 and the dynamical mechanisms acting on it, by measuring the spectator
momentum dependence of nuclear structure functions; (c) coherent effects in
QCD, by exploring shadowing in tagged DIS on deuterium at x << 0.1. The JLab
MEIC design (CM energy sqrt{s} = 15-50 GeV/nucleon, luminosity ~ 10^{34}
cm^{-2} s^{-1}) provides polarized deuterium beams and excellent coverage and
resolution for forward spectator tagging. We summarize the physics topics, the
detector and beam requirements for spectator tagging, and on-going R&D efforts.Comment: 6 pages, 2 figures. Prepared for proceedings of DIS 2014, XXII.
International Workshop on Deep-Inelastic Scattering and Related Subjects,
University of Warsaw, Poland, April 28 - May 2, 201
Short Range Correlations and the EMC Effect
This paper shows quantitatively that the magnitude of the EMC effect measured
in electron deep inelastic scattering (DIS) at intermediate , , is linearly related to the Short Range Correlation (SRC) scaling
factor obtained from electron inclusive scattering at . The observed
phenomenological relationship is used to extract the ratio of the deuteron to
the free pair cross sections, the DIS cross section for a free neutron,
and , the ratio of the free neutron to free proton structure
functions. We speculate that the observed correlation is because both the EMC
effect and SRC are dominated by the high virtuality (high momentum) nucleons in
the nucleus.Comment: 5 pages, 2 figures, minor changes for PRL acceptance, reference 12
correcte
Neutron spin structure with polarized deuterons and spectator proton tagging at EIC
The neutron's deep-inelastic structure functions provide essential
information for the flavor separation of the nucleon parton densities, the
nucleon spin decomposition, and precision studies of QCD phenomena in the
flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on
nuclear targets are limited by dilution from scattering on protons, Fermi
motion and binding effects, final-state interactions, and nuclear shadowing at
x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation
measurements of neutron structure with polarized deuteron beams and detection
of forward-moving spectator protons over a wide range of recoil momenta (0 <
p_R < several 100 MeV in the nucleus rest frame). The free neutron structure
functions could be obtained by extrapolating the measured recoil momentum
distributions to the on-shell point. The method eliminates nuclear
modifications and can be applied to polarized scattering, as well as to
semi-inclusive and exclusive final states. We review the prospects for neutron
structure measurements with spectator tagging at EIC, the status of R&D
efforts, and the accelerator and detector requirements.Comment: 11 pages, 3 figures. To appear in proceedings of Tensor Polarized
Solid Target Workshop, Jefferson Lab, March 10-12, 201
- …
