19,190 research outputs found
Flux surface shaping effects on tokamak edge turbulence and flows
Shaping of magnetic flux surfaces is found to have a strong impact on
turbulence and transport in tokamak edge plasmas. A series of axisymmetric
equilibria with varying elongation and triangularity, and a divertor
configuration are implemented into a computational gyrofluid turbulence model.
The mechanisms of shaping effects on turbulence and flows are identified.
Transport is mainly reduced by local magnetic shearing and an enhancement of
zonal shear flows induced by elongation and X-point shaping.Comment: 10 pages, 11 figures. Submitted to Physics of Plasma
Neural network modeling of memory deterioration in Alzheimer's disease
The clinical course of Alzheimer's disease (AD) is generally characterized by progressive gradual deterioration, although large clinical variability exists. Motivated by the recent quantitative reports of synaptic changes in AD, we use a neural network model to investigate how the interplay between synaptic deletion and compensation determines the pattern of memory deterioration, a clinical hallmark of AD. Within the model we show that the deterioration of memory retrieval due to synaptic deletion can be much delayed by multiplying all the remaining synaptic weights by a common factor, which keeps the average input to each neuron at the same level. This parallels the experimental observation that the total synaptic area per unit volume (TSA) is initially preserved when synaptic deletion occurs. By using different dependencies of the compensatory factor on the amount of synaptic deletion one can define various compensation strategies, which can account for the observed variation in the severity and progression rate of AD
Broad Histogram Method for Continuous Systems: the XY-Model
We propose a way of implementing the Broad Histogram Monte Carlo method to
systems with continuous degrees of freedom, and we apply these ideas to
investigate the three-dimensional XY-model with periodic boundary conditions.
We have found an excellent agreement between our method and traditional
Metropolis results for the energy, the magnetization, the specific heat and the
magnetic susceptibility on a very large temperature range. For the calculation
of these quantities in the temperature range 0.7<T<4.7 our method took less CPU
time than the Metropolis simulations for 16 temperature points in that
temperature range. Furthermore, it calculates the whole temperature range
1.2<T<4.7 using only 2.2 times more computer effort than the Histogram Monte
Carlo method for the range 2.1<T<2.2. Our way of treatment is general, it can
also be applied to other systems with continuous degrees of freedom.Comment: 23 pages, 10 Postscript figures, to be published in Int. J. Mod.
Phys.
Ratcheting of granular materials
We investigate the quasi-static mechanical response of soils under cyclic
loading using a discrete model of randomly generated convex polygons. This
response exhibits a sequence of regimes, each one characterized by a linear
accumulation of plastic deformation with the number of cycles. At the grain
level, a quasi-periodic ratchet-like behavior is observed at the contacts,
which excludes the existence of an elastic regime. The study of this slow
dynamics allows to explore the role of friction in the permanent deformation of
unbound granular materials supporting railroads and streets.Comment: Changed content Submitted to Physical Review Letter
- …