19,190 research outputs found

    Flux surface shaping effects on tokamak edge turbulence and flows

    Full text link
    Shaping of magnetic flux surfaces is found to have a strong impact on turbulence and transport in tokamak edge plasmas. A series of axisymmetric equilibria with varying elongation and triangularity, and a divertor configuration are implemented into a computational gyrofluid turbulence model. The mechanisms of shaping effects on turbulence and flows are identified. Transport is mainly reduced by local magnetic shearing and an enhancement of zonal shear flows induced by elongation and X-point shaping.Comment: 10 pages, 11 figures. Submitted to Physics of Plasma

    Neural network modeling of memory deterioration in Alzheimer's disease

    Get PDF
    The clinical course of Alzheimer's disease (AD) is generally characterized by progressive gradual deterioration, although large clinical variability exists. Motivated by the recent quantitative reports of synaptic changes in AD, we use a neural network model to investigate how the interplay between synaptic deletion and compensation determines the pattern of memory deterioration, a clinical hallmark of AD. Within the model we show that the deterioration of memory retrieval due to synaptic deletion can be much delayed by multiplying all the remaining synaptic weights by a common factor, which keeps the average input to each neuron at the same level. This parallels the experimental observation that the total synaptic area per unit volume (TSA) is initially preserved when synaptic deletion occurs. By using different dependencies of the compensatory factor on the amount of synaptic deletion one can define various compensation strategies, which can account for the observed variation in the severity and progression rate of AD

    Broad Histogram Method for Continuous Systems: the XY-Model

    Full text link
    We propose a way of implementing the Broad Histogram Monte Carlo method to systems with continuous degrees of freedom, and we apply these ideas to investigate the three-dimensional XY-model with periodic boundary conditions. We have found an excellent agreement between our method and traditional Metropolis results for the energy, the magnetization, the specific heat and the magnetic susceptibility on a very large temperature range. For the calculation of these quantities in the temperature range 0.7<T<4.7 our method took less CPU time than the Metropolis simulations for 16 temperature points in that temperature range. Furthermore, it calculates the whole temperature range 1.2<T<4.7 using only 2.2 times more computer effort than the Histogram Monte Carlo method for the range 2.1<T<2.2. Our way of treatment is general, it can also be applied to other systems with continuous degrees of freedom.Comment: 23 pages, 10 Postscript figures, to be published in Int. J. Mod. Phys.

    Ratcheting of granular materials

    Get PDF
    We investigate the quasi-static mechanical response of soils under cyclic loading using a discrete model of randomly generated convex polygons. This response exhibits a sequence of regimes, each one characterized by a linear accumulation of plastic deformation with the number of cycles. At the grain level, a quasi-periodic ratchet-like behavior is observed at the contacts, which excludes the existence of an elastic regime. The study of this slow dynamics allows to explore the role of friction in the permanent deformation of unbound granular materials supporting railroads and streets.Comment: Changed content Submitted to Physical Review Letter
    • …
    corecore