777 research outputs found

    The Christmas Island Seamount Province, Indian Ocean: Origin of Intraplate Volcanism by Shallow Recycling of Continental Lithosphere?

    Get PDF
    The east-west-trending Christmas Island Seamount Province (CHRISP, 1800x600 km) in the northeastern Indian Ocean is elongated orthogonal to present-day plate motion, posing the question if a mantle plume formed this volcanic belt. Here we report the first age (Ar/Ar) and geochemical (Sr- Nd-Hf-Pb DS isotopic data) from the CHRISP seamount chain. A crude E-W age decrease from the Argo Basin (136 Ma), to the Eastern Wharton Basin (115-94 Ma) to the Vening-Meinesz seamounts (96-64 Ma) to the Cocos-Keeling seamounts (56-47 Ma) suggests spatial migration of melting. Christmas Island, however, yields much younger ages (44-4 Ma), inconsistent with an age progression. The isotopic compositions (e.g. 206Pb/204Pb = 17.3-19.3; 207Pb/204Pb = 15.49- 15.67; 143Nd/144Nd = 0.51220-0.51295; 176Hf/177Hf = 0.28246- 0.28319) range from enriched MORB (or “C”) to very enriched mantle (EM1) type compositions more typical of continental than oceanic volcanism. Lamproitic and kimberlitic rocks from western Australia, India and other continental areas, derived from metasomatized subcontinental lithospheric mantle, could serve as the EM1 type endmembers. The morphology, ages and chemical composition of the CHRISP, combined with plate tectonic reconstructions, cannot be easily explained within the framework of the mantle plume hypotheses. We therefore propose that the seamounts are derived through the recycling of continental lithosphere (mantle ± lower crust) delaminated during the breakup of Gondwana and brought to the surface at the former spreading centers separating Argoland (western Burma), Greater India and Australia

    The CRESST Experiment: Recent Results and Prospects

    Get PDF
    The CRESST experiment seeks hypothetical WIMP particles that could account for the bulk of dark matter in the Universe. The detectors are cryogenic calorimeters in which WIMPs would scatter elastically on nuclei, releasing phonons. The first phase of the experiment has successfully deployed several 262 g sapphire devices in the Gran Sasso underground laboratories. A main source of background has been identified as microscopic mechanical fracturing of the crystals, and has been eliminated, improving the background rate by up to three orders of magnitude at low energies, leaving a rate close to one count per day per kg and per keV above 10 keV recoil energy. This background now appears to be dominated by radioactivity, and future CRESST scintillating calorimeters which simultaneously measure light and phonons will allow rejection of a great part of it.Comment: To appear in the proceedings of the CAPP2000 Conference, Verbier, Switzerland, July, 2000 (eds J. Garcia-Bellido, R. Durrer, and M. Shaposhnikov

    The ν\nu-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Full text link
    We discuss a small-scale experiment, called ν\nu-cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV-regime. The detector consists of low-threshold CaWO4_4 and Al2_2O3_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ\gamma, neutron and surface backgrounds. A first prototype Al2_2O3_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of 20{\sim20} eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ\sigma) within a measuring time of 2{\lesssim2} weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.Comment: 14 pages, 19 figure

    Observation of out-of-phase bilayer plasmons in YBa_2Cu_3O_7-delta

    Get PDF
    The temperature dependence of the c-axis optical conductivity \sigma(\omega) of optimally and overdoped YBa_2Cu_3O_x (x=6.93 and 7) is reported in the far- (FIR) and mid-infrared (MIR) range. Below T_c we observe a transfer of spectral weight from the FIR not only to the condensate at \omega = 0, but also to a new peak in the MIR. This peak is naturally explained as a transverse out-of-phase bilayer plasmon by a model for \sigma(\omega) which takes the layered crystal structure into account. With decreasing doping the plasmon shifts to lower frequencies and can be identified with the surprising and so far not understood FIR feature reported in underdoped bilayer cuprates.Comment: 7 pages, 3 eps figures, Revtex, epsfi

    The CRESST Dark Matter Search

    Full text link
    We present first competitive results on WIMP dark matter using the phonon-light-detection technique. A particularly strong limit for WIMPs with coherent scattering results from selecting a region of the phonon-light plane corresponding to tungsten recoils. The observed count rate in the neutron band is compatible with the rate expected from neutron background. CRESST is presently being upgraded with a 66 channel SQUID readout system, a neutron shield and a muon veto system. This results in a significant improvement in sensitivity.Comment: 6 pages, 3 figures, to be published in the proceedings of the 5th International Workshop on the Identification and Detection of Dark Matter IDM 2004, Edinburgh, Sept. 2004, World Scientifi
    corecore