668 research outputs found

    Rydberg Wave Packets are Squeezed States

    Full text link
    We point out that Rydberg wave packets (and similar ``coherent" molecular packets) are, in general, squeezed states, rather than the more elementary coherent states. This observation allows a more intuitive understanding of their properties; e.g., their revivals.Comment: 7 pages of text plus one figure available in the literature, LA-UR 93-2804, to be published in Quantum Optics, LaTe

    Uncertainty Relations in Deformation Quantization

    Full text link
    Robertson and Hadamard-Robertson theorems on non-negative definite hermitian forms are generalized to an arbitrary ordered field. These results are then applied to the case of formal power series fields, and the Heisenberg-Robertson, Robertson-Schr\"odinger and trace uncertainty relations in deformation quantization are found. Some conditions under which the uncertainty relations are minimized are also given.Comment: 28+1 pages, harvmac file, no figures, typos correcte

    A closer look at the uncertainty relation of position and momentum

    Full text link
    We consider particles prepared by the von Neumann-L\"uders projection. For those particles the standard deviation of the momentum is discussed. We show that infinite standard deviations are not exceptions but rather typical. A necessary and sufficient condition for finite standard deviations is given. Finally, a new uncertainty relation is derived and it is shown that the latter cannot be improved.Comment: 3 pages, introduction shortened, content unchange

    From Heisenberg to Goedel via Chaitin

    Full text link
    In 1927 Heisenberg discovered that the ``more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa''. Four years later G\"odel showed that a finitely specified, consistent formal system which is large enough to include arithmetic is incomplete. As both results express some kind of impossibility it is natural to ask whether there is any relation between them, and, indeed, this question has been repeatedly asked for a long time. The main interest seems to have been in possible implications of incompleteness to physics. In this note we will take interest in the {\it converse} implication and will offer a positive answer to the question: Does uncertainty imply incompleteness? We will show that algorithmic randomness is equivalent to a ``formal uncertainty principle'' which implies Chaitin's information-theoretic incompleteness. We also show that the derived uncertainty relation, for many computers, is physical. In fact, the formal uncertainty principle applies to {\it all} systems governed by the wave equation, not just quantum waves. This fact supports the conjecture that uncertainty implies randomness not only in mathematics, but also in physics.Comment: Small change

    Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy

    Full text link
    Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.Comment: 22 pages, RevTeX, four .eps figures, to appear in Found. Phys. Lett. Vol. 17, Dec. 200

    A volume inequality for quantum Fisher information and the uncertainty principle

    Full text link
    Let A1,...,ANA_1,...,A_N be complex self-adjoint matrices and let ρ\rho be a density matrix. The Robertson uncertainty principle det(Covρ(Ah,Aj))≄det(−i2Tr(ρ[Ah,Aj])) det(Cov_\rho(A_h,A_j)) \geq det(- \frac{i}{2} Tr(\rho [A_h,A_j])) gives a bound for the quantum generalized covariance in terms of the commutators [Ah,Aj][A_h,A_j]. The right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case N=2m+1N=2m+1. Let ff be an arbitrary normalized symmetric operator monotone function and let ρ,f_{\rho,f} be the associated quantum Fisher information. In this paper we conjecture the inequality det(Covρ(Ah,Aj))≄det(f(0)2ρ,f) det (Cov_\rho(A_h,A_j)) \geq det (\frac{f(0)}{2} _{\rho,f}) that gives a non-trivial bound for any natural number NN using the commutators i[ρ,Ah]i[\rho, A_h]. The inequality has been proved in the cases N=1,2N=1,2 by the joint efforts of many authors. In this paper we prove the case N=3 for real matrices

    Determinants of impact : towards a better understanding of encounters with the arts

    Get PDF
    The article argues that current methods for assessing the impact of the arts are largely based on a fragmented and incomplete understanding of the cognitive, psychological and socio-cultural dynamics that govern the aesthetic experience. It postulates that a better grasp of the interaction between the individual and the work of art is the necessary foundation for a genuine understanding of how the arts can affect people. Through a critique of philosophical and empirical attempts to capture the main features of the aesthetic encounter, the article draws attention to the gaps in our current understanding of the responses to art. It proposes a classification and exploration of the factors—social, cultural and psychological—that contribute to shaping the aesthetic experience, thus determining the possibility of impact. The ‘determinants of impact’ identified are distinguished into three groups: those that are inherent to the individual who interacts with the artwork; those that are inherent to the artwork; and ‘environmental factors’, which are extrinsic to both the individual and the artwork. The article concludes that any meaningful attempt to assess the impact of the arts would need to take these ‘determinants of impact’ into account, in order to capture the multidimensional and subjective nature of the aesthetic experience

    Modeling and characterization of TES-based detectors for the Ricochet experiment

    Full text link
    Coherent elastic neutrino-nucleus scattering (CEΜ\nuNS) offers a valuable approach in searching for physics beyond the Standard Model. The Ricochet experiment aims to perform a precision measurement of the CEΜ\nuNS spectrum at the Institut Laue-Langevin nuclear reactor with cryogenic solid-state detectors. The experiment plans to employ an array of cryogenic thermal detectors, each with a mass around 30 g and an energy threshold of sub-100 eV. The array includes nine detectors read out by Transition-Edge Sensors (TES). These TES based detectors will also serve as demonstrators for future neutrino experiments with thousands of detectors. In this article we present an update in the characterization and modeling of a prototype TES detector.Comment: Submitted to LTD20 proceedin

    Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution

    Get PDF
    Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work

    Thermalisation of a two-dimensional photonic gas in a 'white-wall' photon box

    Full text link
    Bose-Einstein condensation, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems. The perhaps best known example of a bosonic gas, blackbody radiation, however exhibits no Bose-Einstein condensation at low temperatures. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered - corresponding to a vanishing chemical potential. Here we report on evidence for a thermalised two-dimensional photon gas with freely adjustable chemical potential. Our experiment is based on a dye filled optical microresonator, acting as a 'white-wall' box for photons. Thermalisation is achieved in a photon number-conserving way by photon scattering off the dye-molecules, and the cavity mirrors both provide an effective photon mass and a confining potential - key prerequisites for the Bose-Einstein condensation of photons. As a striking example for the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection.Comment: 15 pages, 3 figure
    • 

    corecore