2,040 research outputs found

    Numerical observation of non-axisymmetric vesicles in fluid membranes

    Full text link
    By means of Surface Evolver (Exp. Math,1,141 1992), a software package of brute-force energy minimization over a triangulated surface developed by the geometry center of University of Minnesota, we have numerically searched the non-axisymmetric shapes under the Helfrich spontaneous curvature (SC) energy model. We show for the first time there are abundant mechanically stable non-axisymmetric vesicles in SC model, including regular ones with intrinsic geometric symmetry and complex irregular ones. We report in this paper several interesting shapes including a corniculate shape with six corns, a quadri-concave shape, a shape resembling sickle cells, and a shape resembling acanthocytes. As far as we know, these shapes have not been theoretically obtained by any curvature model before. In addition, the role of the spontaneous curvature in the formation of irregular crenated vesicles has been studied. The results shows a positive spontaneous curvature may be a necessary condition to keep an irregular crenated shape being mechanically stable.Comment: RevTex, 14 pages. A hard copy of 8 figures is available on reques

    Evolution of the Electronic Structure of 1T-CuxTiSe2

    Full text link
    The electronic structure of a new charge-density-wave/ superconductor system, 1T-CuxTiSe2, has been studied by photoemission spectroscopy. A correlated semiconductor band structure is revealed for the undoped case. With Cu doping, the charge density wave is suppressed by the raising of the chemical potential, while the superconductivity is enhanced by the enhancement of the density of states. Moreover, the strong scattering at high doping might be responsible for the suppression of superconductivity in that regime.Comment: 5 pages, 4 figure

    Normal state electronic structure in the heavily overdoped regime of Bi1.74Pb0.38Sr1.88CuO6+delta single-layer cuprate superconductors

    Get PDF
    We explore the electronic structure in the heavily overdoped regime of the single layer cuprate superconductor Bi1.74Pb0.38Sr1.88CuO6+delta. We found that the nodal quasiparticle behavior is dominated mostly by phonons, while the antinodal quasiparticle lineshape is dominated by spin fluctuations. Moreover, while long range spin fluctuations diminish at very high doping, the local magnetic fluctuations still dominate the quasiparticle dispersion, and the system exhibits a strange metal behavior in the entire overdoped regime.Comment: 5 pages, 4 figure

    Primary role of the barely occupied states in the charge density wave formation of NbSe2

    Full text link
    NbSe2 is a prototypical charge-density-wave (CDW) material, whose mechanism remains mysterious so far. With angle resolved photoemission spectroscopy, we mapped out the CDW gap and recovered the long-lost nesting condition over a large broken-honeycomb region in the Brillouin zone, which consists of six saddle band point regions with high density of states (DOS), and large regions away from Fermi surface with negligible DOS at the Fermi energy. We show that the major contributions to the CDW come from these barely occupied states rather than the saddle band points. Our findings not only resolve a long standing puzzle, but also overthrow the conventional wisdom that CDW is dominated by regions with high DOS.Comment: 5 pages, 4 figure

    Specific heats of dilute neon inside long single-walled carbon nanotube and related problems

    Full text link
    An elegant formula for coordinates of carbon atoms in a unit cell of a single-walled nanotube (SWNT) is presented and the potential of neon (Ne) inside an infinitely long SWNT is analytically derived out under the condition of the Lennard-Jones potential between Ne and carbon atoms. Specific heats of dilute Ne inside long (20, 20) SWNT are calculated at different temperatures. It is found that Ne exhibits 3-dimensional (3D) gas behavior at high temperature but behaves as 2D gas at low temperature. Especially, at ultra low temperature, Ne inside (20, 20) nanotubes behaves as lattice gas. A coarse method to determine the characteristic temperature Tc\mathcal{T}_c for low density gas in a potential is put forward. If T≫Tc\mathcal{T}\gg \mathcal{T}_c, we just need to use the classical statistical mechanics without solving the Shr\"{o}dinger equation to consider the thermal behavior of gas in the potential. But if T∼Tc\mathcal{T}\sim \mathcal{T}_c, we must solve the Shr\"{o}dinger equation. For Ne in (20,20) nanotube, we obtain Tc≈60\mathcal{T}_c\approx 60 K.Comment: 14 pages, 7 figure

    The strain energy and Young's Moduli of single-wall Carbon nanotubules calculated from the electronic energy-band theory

    Full text link
    The strain energies in straight and bent single-walled carbon nanotubes (SWNTs) are calculated by taking account of the total energy of all the occupied band electrons. The obtained results are in good agreement with previous theoretical studies and experimental observations. The Young's modulus and the effective wall thickness of SWNT are obtained from the bending strain energies of SWNTs with various cross-sectional radii. The repulsion potential between ions contributes the main part of the Young's modulus of SWNT. The wall thickness of SWNT comes completely from the overlap of electronic orbits, and is approximately of the extension of π\pi orbit of carbon atom. Both the Young's modulus and the wall thickness are independent of the radius and the helicity of SWNT, and insensitive to the fitting parameters. The results show that continuum elasticity theory can serve well to describe the mechanical properties of SWNTs.Comment: 12 pages, 2 figure

    Origin and Radiative Forcing of Black Carbon Aerosol: Production and Consumption Perspectives.

    Get PDF
    Air pollution, a threat to air quality and human health, has attracted ever-increasing attention in recent years. In addition to having local influence, air pollutants can also travel the globe via atmospheric circulation and international trade. Black carbon (BC), emitted from incomplete combustion, is a unique but representative particulate pollutant. This study tracked down the BC aerosol and its direct radiative forcing to the emission sources and final consumers using the global chemical transport model (MOZART-4), the rapid radiative transfer model for general circulation simulations (RRTM), and a multiregional input-output analysis (MRIO). BC was physically transported (i.e., atmospheric transport) from western to eastern countries in the midlatitude westerlies, but its magnitude is near an order of magnitude higher if the virtual flow embodied in international trade is considered. The transboundary effects on East and South Asia by other regions increased from about 3% (physical transport only) to 10% when considering both physical and virtual transport. The influence efficiency on East Asia was also large because of the comparatively large emission intensity and emission-intensive exports (e.g., machinery and equipment). The radiative forcing in Africa imposed by consumption from Europe, North America, and East Asia (0.01 Wm-2) was even larger than the total forcing in North America. Understanding the supply chain and incorporating both atmospheric and virtual transport may improve multilateral cooperation on air pollutant mitigation both domestically and internationally

    Generation of GHZ-type and \emph{W}-type entangled coherent states of three-cavity fields

    Full text link
    We present experimental schemes to prepare the three-cavity GHZ-type and \emph{W}-type entangled coherent states in the context of dispersive cavity quantum electrodynamics. The schemes can be easily generalized to prepare the GHZ-type and \emph{W}-type entangled coherent states of nn-cavity fields. The discussion of our schemes indicates that it can be realized by current technologies.Comment: 4 pages, 2 figure

    Superconducting coherence peak in the electronic excitations of a single layer cuprate superconductor Bi2Sr1.6La0.4CuO6+δBi_2 Sr_{1.6} La_{0.4} Cu O_{6+\delta}

    Full text link
    Angle resolved photoemission spectroscopy study is reported on a high quality optimally doped Bi2Sr1.6La0.4CuO6+delta high Tc superconductor. In the antinodal region with maximal d-wave gap, the symbolic superconducting coherence peak, which has been widely observed in multi-CuO2-layer cuprate superconductors, is unambiguously observed in a single layer system. The associated peak-dip separation is just about 19 meV, which is much smaller than its counterparts in multi-layered compounds, but correlates with the energy scales of spin excitations in single layer cuprates.Comment: 5 pages, 4 figure
    • …
    corecore