369 research outputs found

    Insulating state and the importance of the spin-orbit coupling in Ca3_3CoRhO6_6

    Full text link
    We have carried out a comparative theoretical study of the electronic structure of the novel one-dimensional Ca3_3CoRhO6_6 and Ca3_3FeRhO6_6 systems. The insulating antiferromagnetic state for the Ca3_3FeRhO6_6 can be well explained by band structure calculations with the closed shell high-spin d5d^5 (Fe3+^{3+}) and low-spin t2g6t_{2g}^{6} (Rh3+^{3+}) configurations. We found for the Ca3_3CoRhO6_6 that the Co has a strong tendency to be d7d^7 (Co2+^{2+}) rather than d6d^6 (Co3+^{3+}), and that there is an orbital degeneracy in the local Co electronic structure. We argue that it is the spin-orbit coupling which will lift this degeneracy thereby enabling local spin density approximation + Hubbard U (LSDA+U) band structure calculations to generate the band gap. We predict that the orbital contribution to the magnetic moment in Ca3_3CoRhO6_6 is substantial, i.e. significantly larger than 1 μB\mu_B per formula unit. Moreover, we propose a model for the contrasting intra-chain magnetism in both materials.Comment: 7 pages, 4 figures, and 1 tabl

    Nature of magnetism in Ca3_3Co2_2O6_6

    Full text link
    We find using LSDA+U band structure calculations that the novel one-dimensional cobaltate Ca3_3Co2_2O6_6 is not a ferromagnetic half-metal but a Mott insulator. Both the octahedral and the trigonal Co ions are formally trivalent, with the octahedral being in the low-spin and the trigonal in the high-spin state. The inclusion of the spin-orbit coupling leads to the occupation of the minority-spin d2d_{2} orbital for the unusually coordinated trigonal Co, producing a giant orbital moment (1.57 μB\mu_{B}). It also results in an anomalously large magnetocrystalline anisotropy (of order 70 meV), elucidating why the magnetism is highly Ising-like. The role of the oxygen holes, carrying an induced magnetic moment of 0.13 μB\mu_{B} per oxygen, for the exchange interactions is discussed.Comment: 5 pages, 4 figures, and 1 tabl

    Field-controlled phase separation at the impurity-induced magnetic ordering in the spin-Peierls magnet CuGeO3

    Full text link
    The fraction of the paramagnetic phase surviving at the impurity-induced antiferromagnetic order transition of the doped spin-Peierls magnet Cu(1-x)Mg(x)GeO3 (x < 5%) is found to increase with an external magnetic field. This effect is qualitatively explained by the competition of Zeeman energy and exchange interaction between local antiferromagnetic clustersComment: 4 pages 4 figure

    Transmission phase lapses in quantum dots: the role of dot-lead coupling asymmetry

    Full text link
    Lapses of transmission phase in transport through quantum dots are ubiquitous already in the absence of interaction, in which case their precise location is determined by the signs and magnitudes of the tunnelling matrix elements. However, actual measurements for a quantum dot embedded in an Aharonov-Bohm interferometer show systematic sequences of phase lapses separated by Coulomb peaks -- an issue that attracted much attention and generated controversy. Using a two-level quantum dot as an example we show that this phenomenon can be accounted for by the combined effect of asymmetric dot-lead couplings (left lead/right lead asymmetry as well as different level broadening for different levels) and interaction-induced "population switching" of the levels, rendering this behaviour generic. We construct and analyse a mean field scheme for an interacting quantum dot, and investigate the properties of the mean field solution, paying special attention to the character of its dependence (continuous vs. discontinuous) on the chemical potential or gate voltage.Comment: 34 LaTeX pages in IOP format, 9 figures; misprints correcte

    Shifts of the nuclear resonance in the vortex lattice in YBa2_2Cu3_3O7_7

    Full text link
    The NMR and NQR spectra of 63^{63}Cu in the CuO2_2 plane of YBa2_2Cu3_3O7_7 in the superconducting state are discussed in terms of the phenomenological theory of Ginzburg-Landau type extended to lower temperatures. We show that the observed spectra, Kumagai {\em et al.}, PRB {\bf 63}, 144502 (2001), can be explained by a standard theory of the Bernoulli potential with the charge transfer between CuO2_2 planes and CuO chains assumed.Comment: 11 pages 7 figure

    Phase diagram of disordered spin-Peierls systems

    Get PDF
    We study the competition between the spin-Peierls and the antiferromagnetic ordering in disordered quasi-one-dimensional spin systems. We obtain the temperature vs disorder-strength phase diagram, which qualitatively agrees with recent experiments on doped CuGeO_3.Comment: 4 pages, revtex, epsf, 2 Postscript figure

    Na2IrO3 as a molecular orbital crystal

    Full text link
    Contrary to previous studies that classify Na2IrO3 as a realization of the Heisenberg-Kitaev model with dominant spin-orbit coupling, we show that this system represents a highly unusual case in which the electronic structure is dominated by the formation of quasi-molecular orbitals (QMOs), with substantial quenching of the orbital moments. The QMOs consist of six atomic orbitals on an Ir hexagon, but each Ir atom belongs to three different QMOs. The concept of such QMOs in solids invokes very different physics compared to the models considered previously. Employing density functional theory calculations and model considerations we find that both the insulating behavior and the experimentally observed zigzag antiferromagnetism in Na2IrO3 naturally follow from the QMO model.Comment: Final version, accepted by PR

    Orbital-quenching-induced magnetism in Ba_2NaOsO_6

    Full text link
    The double perovskite \bnoo with heptavalent Os (d1d^1) is observed to remain in the ideal cubic structure ({\it i.e.} without orbital ordering) despite single occupation of the t2gt_{2g} orbitals, even in the ferromagnetically ordered phase below 6.8 K. Analysis based on the {\it ab initio} dispersion expressed in terms of an Os t2gt_{2g}-based Wannier function picture, spin-orbit coupling, Hund's coupling, and strong Coulomb repulsion shows that the magnetic OsO6_6 cluster is near a moment-less condition due to spin and orbital compensation. Quenching (hybridization) then drives the emergence of the small moment. This compensation, unprecedented in transition metals, arises in a unified picture that accounts for the observed Mott insulating behavior.Comment: in press at Europhysics Letter

    Orbital-assisted metal-insulator transition in VO2_{2}

    Get PDF
    We found direct experimental evidence for an orbital switching in the V 3d states across the metal-insulator transition in VO2_{2}. We have used soft-x-ray absorption spectroscopy at the V L2,3L_{2,3} edges as a sensitive local probe, and have determined quantitatively the orbital polarizations. These results strongly suggest that, in going from the metallic to the insulating state, the orbital occupation changes in a manner that charge fluctuations and effective band widths are reduced, that the system becomes more 1-dimensional and more susceptible to a Peierls-like transition, and that the required massive orbital switching can only be made if the system is close to a Mott insulating regime

    Orbitally driven spin-singlet dimerization in SS=1 La4_{4}Ru2_{2}O10_{10}

    Get PDF
    Using x-ray absorption spectroscopy at the Ru-L2,3L_{2,3} edge we reveal that the Ru4+^{4+} ions remain in the SS=1 spin state across the rare 4d-orbital ordering transition and spin-gap formation. We find using local spin density approximation + Hubbard U (LSDA+U) band structure calculations that the crystal fields in the low temperature phase are not strong enough to stabilize the SS=0 state. Instead, we identify a distinct orbital ordering with a significant anisotropy of the antiferromagnetic exchange couplings. We conclude that La4_{4}Ru2_{2}O10_{10} appears to be a novel material in which the orbital physics drives the formation of spin-singlet dimers in a quasi 2-dimensional SS=1 system.Comment: 5 pages, 4 figures, and 1 tabl
    corecore