26,071 research outputs found

    Efficient Schemes for Reducing Imperfect Collective Decoherences

    Get PDF
    We propose schemes that are efficient when each pair of qubits undergoes some imperfect collective decoherence with different baths. In the proposed scheme, each pair of qubits is first encoded in a decoherence-free subspace composed of two qubits. Leakage out of the encoding space generated by the imperfection is reduced by the quantum Zeno effect. Phase errors in the encoded bits generated by the imperfection are reduced by concatenation of the decoherence-free subspace with either a three-qubit quantum error correcting code that corrects only phase errors or a two-qubit quantum error detecting code that detects only phase errors, connected with the quantum Zeno effect again.Comment: no correction, 3 pages, RevTe

    Conserved cosmological structures in the one-loop superstring effective action

    Get PDF
    A generic form of low-energy effective action of superstring theories with one-loop quantum correction is well known. Based on this action we derive the complete perturbation equations and general analytic solutions in the cosmological spacetime. Using the solutions we identify conserved quantities characterizing the perturbations: the amplitude of gravitational wave and the perturbed three-space curvature in the uniform-field gauge both in the large-scale limit, and the angular-momentum of rotational perturbation are conserved independently of changing gravity sector. Implications for calculating perturbation spectra generated in the inflation era based on the string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.

    A conserved variable in the perturbed hydrodynamic world model

    Full text link
    We introduce a scalar-type perturbation variable Φ\Phi which is conserved in the large-scale limit considering general sign of three-space curvature (KK), the cosmological constant (Λ\Lambda), and time varying equation of state. In a pressureless medium Φ\Phi is {\it exactly conserved} in all scales.Comment: 4 pages, no figure, To appear in Phys. Rev.

    Dielectric function, screening, and plasmons in 2D graphene

    Full text link
    The dynamical dielectric function of two dimensional graphene at arbitrary wave vector qq and frequency ω\omega, ϵ(q,ω)\epsilon(q,\omega), is calculated in the self-consistent field approximation. The results are used to find the dispersion of the plasmon mode and the electrostatic screening of the Coulomb interaction in 2D graphene layer within the random phase approximation. At long wavelengths (q0q\to 0) the plasmon dispersion shows the local classical behavior ωcl=ω0q\omega_{cl} = \omega_0 \sqrt{q}, but the density dependence of the plasma frequency (ω0n1/4\omega_0 \propto n^{1/4}) is different from the usual 2D electron system (ω0n1/2\omega_0 \propto n^{1/2}). The wave vector dependent plasmon dispersion and the static screening function show very different behavior than the usual 2D case.Comment: 6 pages, 3 figure

    Unified Analysis of Cosmological Perturbations in Generalized Gravity

    Full text link
    In a class of generalized Einstein's gravity theories we derive the equations and general asymptotic solutions describing the evolution of the perturbed universe in unified forms. Our gravity theory considers general couplings between the scalar field and the scalar curvature in the Lagrangian, thus includes broad classes of generalized gravity theories resulting from recent attempts for the unification. We analyze both the scalar-type mode and the gravitational wave in analogous ways. For both modes the large scale evolutions are characterized by the same conserved quantities which are valid in the Einstein's gravity. This unified and simple treatment is possible due to our proper choice of the gauges, or equivalently gauge invariant combinations.Comment: 4 pages, revtex, no figure

    NO sub X Deposited in the Stratosphere by the Space Shuttle Solid Rocket Motors

    Get PDF
    The possible effects of the interaction of the plumes from the two solid rocket motors (SRM) from the space shuttles and mixing of the rocket exhaust products and ambient air in the base recirculation region on the total nitrous oxide deposition rate in the stratosphere were investigated. It was shown that these phenomena will not influence the total NOx deposition rate. It was also shown that uncertainties in the particle size of Al2O3, size distributions and particle/gas drag and heat transfer coefficients will not have a significant effect on the predicted NOx deposition rate. The final results show that the total mass flow of NOx leaving the plume at 30 km altitude is 4000 g./sec with a possible error factor of 3. For a vehicle velocity of 1140 meter/sec this yields an NOx deposition rate of about 3.5 g./meter. The corresponding HCl deposition rate at this altitude is about a factor of 500 greater than this value

    Compressibility of graphene

    Full text link
    We develop a theory for the compressibility and quantum capacitance of disordered monolayer and bilayer graphene including the full hyperbolic band structure and band gap in the latter case. We include the effects of disorder in our theory, which are of particular importance at the carrier densities near the Dirac point. We account for this disorder statistically using two different averaging procedures: first via averaging over the density of carriers directly, and then via averaging in the density of states to produce an effective density of carriers. We also compare the results of these two models with experimental data, and to do this we introduce a model for inter-layer screening which predicts the size of the band gap between the low-energy conduction and valence bands for arbitary gate potentials applied to both layers of bilayer graphene. We find that both models for disorder give qualitatively correct results for gapless systems, but when there is a band gap at charge neutrality, the density of states averaging is incorrect and disagrees with the experimental data.Comment: 10 pages, 7 figures, RevTe

    Valley dependent many-body effects in 2D semiconductors

    Full text link
    We calculate the valley degeneracy (gvg_v) dependence of the many-body renormalization of quasiparticle properties in multivalley 2D semiconductor structures due to the Coulomb interaction between the carriers. Quite unexpectedly, the gvg_v dependence of many-body effects is nontrivial and non-generic, and depends qualitatively on the specific Fermi liquid property under consideration. While the interacting 2D compressibility manifests monotonically increasing many-body renormalization with increasing gvg_v, the 2D spin susceptibility exhibits an interesting non-monotonic gvg_v dependence with the susceptibility increasing (decreasing) with gvg_v for smaller (larger) values of gvg_v with the renormalization effect peaking around gv12g_v\sim 1-2. Our theoretical results provide a clear conceptual understanding of recent valley-dependent 2D susceptibility measurements in AlAs quantum wells.Comment: 5 pages, 3 figure
    corecore