306 research outputs found

    The Taurus Tunable Filter Field Galaxy Survey: Sample Selection and Narrowband Number-Counts

    Get PDF
    Recent evidence suggests a falling volume-averaged star-formation rate (SFR) over z ~ 1. It is not clear, however, the extent to which the selection of such samples influences the measurement of this quantity. Using the Taurus Tunable Filter (TTF) we have obtained an emission-line sample of faint star-forming galaxies over comparable lookback times: the TTF Field Galaxy Survey. By selecting through emission-lines, we are screening galaxies through a quantity that scales directly with star-formation activity for a given choice of initial mass function. The scanning narrowband technique furnishes a galaxy sample that differs from traditional broadband-selected surveys in both its volume-limited nature and selection of galaxies through emission-line flux. Three discrete wavelength intervals are covered, centered at H-alpha redshifts z = 0.08, 0.24 and 0.39. Galaxy characteristics are presented and comparisons made with existing surveys of both broadband and emission-line selection. When the number-counts of emission-line objects are compared with those expected on the basis of existing H-alpha surveys, we find an excess of ~ 3 times at the faintest limits. While these detections are yet to be independently confirmed, inspection of the stronger subsample of galaxies detected in both the line and continuum (line-on-continuum subsample; 13 %) is sufficient to support an excess population. This increase in the emission-line field population implies higher star-formation densities over z ~ 0.4. However, further study in the form of multi-object spectroscopic follow-up is necessary to quantify this and confirm the faintest detections in the sample.Comment: 48 pages, 12 figures. To appear in the Astrophysical Journal. An abridged version of the Abstract is shown her

    Galaxy-Quasar correlations between APM galaxies and Hamburg-ESO QSOs

    Full text link
    We detect angular galaxy-QSO cross-correlations between the APM Galaxy Catalogue and a preliminary release (consisting of roughly half of the anticipated final catalogue) of the Hamburg-ESO Catalogue of Bright QSOs as a function of source QSO redshift using multiple cross-correlation estimators. Each of the estimators yield very similar results, implying that the APM catalogue and the Hamburg-ESO survey are both fair samples of the respective true galaxy and QSO populations. Though the signal matches the expectations of gravitational lensing qualitatively, the strength of the measured cross-correlation signal is significantly greater than the CDM models of lensing by large scale structure would suggest. This same disagreement between models and observation has been found in several earlier studies. We estimate our confidence in the correlation detections versus redshift by generating 1000 random realizations of the Hamburg-ESO QSO survey: We detect physical associations between galaxies and low-redshift QSOs at 99% confidence and detect lensing associations at roughly 95% confidence for QSOs with redshifts between 0.6 and 1. Control cross-correlations between Galactic stars and QSOs show no signal. Finally, the overdensities (underdensities) of galaxies near QSO positions relative to those lying roughly 135 - 150 arcmin away are uncorrelated with differences in Galactic extinction between the two regions, implying that Galactic dust is not significantly affecting the QSO sample.Comment: 35 pages total, including 9 figures. Accepted by the Astrophysical Journa

    Raman phonon emission in a driven double quantum dot

    Get PDF
    The compound semiconductor gallium-arsenide (GaAs) provides an ultra-clean platform for storing and manipulating quantum information, encoded in the charge or spin states of electrons confined in nanostructures. The absence of inversion symmetry in the zinc-blende crystal structure of GaAs however, results in a strong piezoelectric interaction between lattice acoustic phonons and qubit states with an electric dipole, a potential source of decoherence during charge-sensitive operations. Here we report phonon generation in a GaAs double quantum dot, configured as a single- or two-electron charge qubit, and driven by the application of microwaves via surface gates. In a process that is a microwave analogue of the Raman effect, phonon emission produces population inversion of the two-level system and leads to rapid decoherence of the qubit when the microwave energy exceeds the level splitting. Comparing data with a theoretical model suggests that phonon emission is a sensitive function of the device geometry

    The Red-Sequence Luminosity Function in Galaxy Clusters since z~1

    Full text link
    We use a statistical sample of ~500 rich clusters taken from 72 square degrees of the Red-Sequence Cluster Survey (RCS-1) to study the evolution of ~30,000 red-sequence galaxies in clusters over the redshift range 0.35<z<0.95. We construct red-sequence luminosity functions (RSLFs) for a well-defined, homogeneously selected, richness limited sample. The RSLF at higher redshifts shows a deficit of faint red galaxies (to M_V=> -19.7) with their numbers increasing towards the present epoch. This is consistent with the `down-sizing` picture in which star-formation ended at earlier times for the most massive (luminous) galaxies and more recently for less massive (fainter) galaxies. We observe a richness dependence to the down-sizing effect in the sense that, at a given redshift, the drop-off of faint red galaxies is greater for poorer (less massive) clusters, suggesting that star-formation ended earlier for galaxies in more massive clusters. The decrease in faint red-sequence galaxies is accompanied by an increase in faint blue galaxies, implying that the process responsible for this evolution of faint galaxies is the termination of star-formation, possibly with little or no need for merging. At the bright end, we also see an increase in the number of blue galaxies with increasing redshift, suggesting that termination of star-formation in higher mass galaxies may also be an important formation mechanism for higher mass ellipticals. By comparing with a low-redshift Abell Cluster sample, we find that the down-sizing trend seen within RCS-1 has continued to the local universe.Comment: ApJ accepted. 11 pages, 5 figure

    Weak Gravitational Lensing by a Sample of X-Ray Luminous Clusters of Galaxies -- II. Comparison with Virial Masses

    Full text link
    Dynamic velocity dispersion and mass estimates are given for a sample of five X-ray luminous rich clusters of galaxies at intermediate redshifts (z~0.3) drawn from a sample of 39 clusters for which we have obtained gravitational lens mass estimates. The velocity dispersions are determined from between 9 and 20 redshifts measured with the LDSS spectrograph of the William Herschel Telescope, and virial radii are determined from imaging using the UH8K mosaic CCD camera on the University of Hawaii 2.24m telescope. Including clusters with velocity dispersions taken from the literature, we have velocity dispersion estimates for 12 clusters in our gravitational lensing sample. For this sample we compare the dynamical velocity dispersion estimates with our estimates of the velocity dispersions made from gravitational lensing by fitting a singular isothermal sphere profile to the observed tangential weak lensing distortion as a function of radius. In all but two clusters, we find a good agreement between the velocity dispersion estimates based on spectroscopy and on weak lensing.Comment: 9 pages, 4 figures, accepted for publication in ApJ. Version in emulateapj format with only minor change
    • 

    corecore