31,167 research outputs found

    HI 21cm observations of the PG1216+069 sub-DLy-alpha absorber field at z=0.00632

    Full text link
    The Westerbork Synthesis Radio Telescope finds a weak 21cm line emission feature at the coordinates (RA-Dec-velocity) of the sub-Damped Lyman-alpha absorber observed at z_abs=0.00632 in the spectrum of PG1216+069. The emission feature, WSRT-J121921+0639, lies within 30" of the quasar sightline, is detected at 99.8% (3 sigma) confidence level, has M_HI between 5 and 15x10^6 M_solar, and has velocity spread between 20 and 60 km/s. Other HI emitters in the field include VCC297 at a projected distance of 86/h_75 kpc and a previously unreported HI cloud, WSRT-J121919+0624 at 112/h_75 kpc with M_HI ~ 3x10^8 M_solar. The optically identified, foreground galaxy that is closest to the quasar sightline appears to be VCC339 (~L*/25) at 29/h_75 kpc and velocity offset 292 km/s . A low surface brightness galaxy with the HI mass of the sub-DLA absorber WSRT-J121921+0639 would likely have m_B ~ 17, and its diffuse optical emission would need to compete with the light of both the background QSO and a brighter foreground star ~10" from the QSO sight line.Comment: 10 pages, 2 figures, accepted for publication in ApJLet

    Unleashing the Power of Distributed CPU/GPU Architectures: Massive Astronomical Data Analysis and Visualization case study

    Full text link
    Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, the increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed today's single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a "software as a service" manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.Comment: 4 Pages, 1 figures, To appear in the proceedings of ADASS XXI, ed. P.Ballester and D.Egret, ASP Conf. Serie

    Safety hazards associated with the charging of lithium/sulfur dioxide cells

    Get PDF
    A continuing research program to assess the responses of spirally wound, lithium/sulfur dioxide cells to charging as functions of charging current, temperature, and cell condition prior to charging is described. Partially discharged cells that are charged at currents greater than one ampere explode with the time to explosion inversely proportional to the charging current. Cells charged at currents of less than one ampere may fail in one of several modes. The data allows an empirical prediction of when certain cells will fail given a constant charging current

    Light to Mass Variations with Environment

    Full text link
    Large and well defined variations exist between the distribution of mass and the light of stars on extragalactic scales. Mass concentrations in the range 10^12 - 10^13 M_sun manifest the most light per unit mass. Group halos in this range are typically the hosts of spiral and irregular galaxies with ongoing star formation. On average M/L_B ~ 90 M_sun/L_sun in these groups . More massive halos have less light per unit mass. Within a given mass range, halos that are dynamically old as measured by crossing times and galaxy morphologies have distinctly less light per unit mass. At the other end of the mass spectrum, below 10^12 M_sun, there is a cutoff in the manifestation of light. Group halos in the range 10^11 - 10^12 M_sun can host dwarf galaxies but with such low luminosities that M/L_B values can range from several hundred to several thousand. It is suspected that there must be completely dark halos at lower masses. Given the form of the halo mass function, it is the low relative luminosities of the high mass halos that has the greatest cosmological implications. Of order half the clustered mass may reside in halos with greater than 10^14 M_sun. By contrast, only 5-10% of clustered mass would lie in entities with less than 10^12 M_sun.Comment: 15 pages, 9 figures, 2 tables, Accepted Astrophysical Journal 619, 000, 2005 (Jan 1

    Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c

    Full text link
    Spin transfer observables for the strangeness-production reaction Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185 collaboration using a transversely-polarized frozen-spin target with an antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at CERN. This measurement investigates observables for which current models of the reaction near threshold make significantly differing predictions. Those models are in good agreement with existing measurements performed with unpolarized particles in the initial state. Theoretical attention has focused on the fact that these models produce conflicting predictions for the spin-transfer observables D_{nn} and K_{nn}, which are measurable only with polarized target or beam. Results presented here for D_{nn} and K_{nn} are found to be in disagreement with predictions from existing models. These results also underscore the importance of singlet-state production at backward angles, while current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure

    Chemical analysis of charged Li/SO(sub)2 cells

    Get PDF
    The initial focus of the program was to confirm that charging can indeed result in explosions and constitute a significant safety problem. Results of this initial effort clearly demonstrated that cells do indeed explode on charge and that charging does indeed constitute a real and severe safety problem. The results of the effort to identify the chemical reactions involved in and responsible for the observed behavior are described

    Stochastic models for atomic clocks

    Get PDF
    For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity

    The application of Heat Capacity Mapping Mission (HCMM) thermal data to snow hydrology

    Get PDF
    The application of HCMM thermal infrared data to snow hydrology and the prediction of snowmelt runoff was evaluated. Data for the Salt Verde watershed in central Arizona and the southern Sierra Nevada in California were analyzed and compared to LANDSAT and NOAA satellite data, U-2 thermal data, and other correlative data. It was determined that HCMM thermal imagery provides data as accurate for snow mapping as does visible imagery, and that in comparison with the reslution of other satellite imagery, it may be the most useful. Data from the HCMM thermal channel, with careful calibration, provides useful snow surface temperature data for hydrological purposes. An approach to an automated method of analysis is presented
    • …
    corecore