31,167 research outputs found
HI 21cm observations of the PG1216+069 sub-DLy-alpha absorber field at z=0.00632
The Westerbork Synthesis Radio Telescope finds a weak 21cm line emission
feature at the coordinates (RA-Dec-velocity) of the sub-Damped Lyman-alpha
absorber observed at z_abs=0.00632 in the spectrum of PG1216+069. The emission
feature, WSRT-J121921+0639, lies within 30" of the quasar sightline, is
detected at 99.8% (3 sigma) confidence level, has M_HI between 5 and 15x10^6
M_solar, and has velocity spread between 20 and 60 km/s. Other HI emitters in
the field include VCC297 at a projected distance of 86/h_75 kpc and a
previously unreported HI cloud, WSRT-J121919+0624 at 112/h_75 kpc with M_HI ~
3x10^8 M_solar. The optically identified, foreground galaxy that is closest to
the quasar sightline appears to be VCC339 (~L*/25) at 29/h_75 kpc and velocity
offset 292 km/s . A low surface brightness galaxy with the HI mass of the
sub-DLA absorber WSRT-J121921+0639 would likely have m_B ~ 17, and its diffuse
optical emission would need to compete with the light of both the background
QSO and a brighter foreground star ~10" from the QSO sight line.Comment: 10 pages, 2 figures, accepted for publication in ApJLet
Unleashing the Power of Distributed CPU/GPU Architectures: Massive Astronomical Data Analysis and Visualization case study
Upcoming and future astronomy research facilities will systematically
generate terabyte-sized data sets moving astronomy into the Petascale data era.
While such facilities will provide astronomers with unprecedented levels of
accuracy and coverage, the increases in dataset size and dimensionality will
pose serious computational challenges for many current astronomy data analysis
and visualization tools. With such data sizes, even simple data analysis tasks
(e.g. calculating a histogram or computing data minimum/maximum) may not be
achievable without access to a supercomputing facility.
To effectively handle such dataset sizes, which exceed today's single machine
memory and processing limits, we present a framework that exploits the
distributed power of GPUs and many-core CPUs, with a goal of providing data
analysis and visualizing tasks as a service for astronomers. By mixing shared
and distributed memory architectures, our framework effectively utilizes the
underlying hardware infrastructure handling both batched and real-time data
analysis and visualization tasks. Offering such functionality as a service in a
"software as a service" manner will reduce the total cost of ownership, provide
an easy to use tool to the wider astronomical community, and enable a more
optimized utilization of the underlying hardware infrastructure.Comment: 4 Pages, 1 figures, To appear in the proceedings of ADASS XXI, ed.
P.Ballester and D.Egret, ASP Conf. Serie
Safety hazards associated with the charging of lithium/sulfur dioxide cells
A continuing research program to assess the responses of spirally wound, lithium/sulfur dioxide cells to charging as functions of charging current, temperature, and cell condition prior to charging is described. Partially discharged cells that are charged at currents greater than one ampere explode with the time to explosion inversely proportional to the charging current. Cells charged at currents of less than one ampere may fail in one of several modes. The data allows an empirical prediction of when certain cells will fail given a constant charging current
Light to Mass Variations with Environment
Large and well defined variations exist between the distribution of mass and
the light of stars on extragalactic scales. Mass concentrations in the range
10^12 - 10^13 M_sun manifest the most light per unit mass. Group halos in this
range are typically the hosts of spiral and irregular galaxies with ongoing
star formation. On average M/L_B ~ 90 M_sun/L_sun in these groups . More
massive halos have less light per unit mass. Within a given mass range, halos
that are dynamically old as measured by crossing times and galaxy morphologies
have distinctly less light per unit mass. At the other end of the mass
spectrum, below 10^12 M_sun, there is a cutoff in the manifestation of light.
Group halos in the range 10^11 - 10^12 M_sun can host dwarf galaxies but with
such low luminosities that M/L_B values can range from several hundred to
several thousand. It is suspected that there must be completely dark halos at
lower masses. Given the form of the halo mass function, it is the low relative
luminosities of the high mass halos that has the greatest cosmological
implications. Of order half the clustered mass may reside in halos with greater
than 10^14 M_sun. By contrast, only 5-10% of clustered mass would lie in
entities with less than 10^12 M_sun.Comment: 15 pages, 9 figures, 2 tables, Accepted Astrophysical Journal 619,
000, 2005 (Jan 1
Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c
Spin transfer observables for the strangeness-production reaction
Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185
collaboration using a transversely-polarized frozen-spin target with an
antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at
CERN. This measurement investigates observables for which current models of the
reaction near threshold make significantly differing predictions. Those models
are in good agreement with existing measurements performed with unpolarized
particles in the initial state. Theoretical attention has focused on the fact
that these models produce conflicting predictions for the spin-transfer
observables D_{nn} and K_{nn}, which are measurable only with polarized target
or beam. Results presented here for D_{nn} and K_{nn} are found to be in
disagreement with predictions from existing models. These results also
underscore the importance of singlet-state production at backward angles, while
current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure
Chemical analysis of charged Li/SO(sub)2 cells
The initial focus of the program was to confirm that charging can indeed result in explosions and constitute a significant safety problem. Results of this initial effort clearly demonstrated that cells do indeed explode on charge and that charging does indeed constitute a real and severe safety problem. The results of the effort to identify the chemical reactions involved in and responsible for the observed behavior are described
Stochastic models for atomic clocks
For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity
The application of Heat Capacity Mapping Mission (HCMM) thermal data to snow hydrology
The application of HCMM thermal infrared data to snow hydrology and the prediction of snowmelt runoff was evaluated. Data for the Salt Verde watershed in central Arizona and the southern Sierra Nevada in California were analyzed and compared to LANDSAT and NOAA satellite data, U-2 thermal data, and other correlative data. It was determined that HCMM thermal imagery provides data as accurate for snow mapping as does visible imagery, and that in comparison with the reslution of other satellite imagery, it may be the most useful. Data from the HCMM thermal channel, with careful calibration, provides useful snow surface temperature data for hydrological purposes. An approach to an automated method of analysis is presented
- …