184 research outputs found

    Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap

    Full text link
    We demonstrate lasing oscillation in a three-dimensional photonic crystal nanocavity. The laser is realized by coupling a cavity mode, which is localized in a complete photonic bandgap and exhibits the highest quality factor of ~38,500, with high-quality semiconductor quantum dots. We show a systematic change in the laser characteristics, including the threshold and the spontaneous emission coupling factor by controlling the crystal size, which consequently changes the strength of photon confinement in the third dimension. This opens up many interesting possibilities for realizing future ultimate light sources and three-dimensional integrated photonic circuits and for more fundamental studies of physics in the field of cavity quantum electrodynamics.Comment: 14 pages, 4 figure

    Vertical-external-cavity surface-emitting lasers and quantum dot lasers

    Full text link
    The use of cavity to manipulate photon emission of quantum dots (QDs) has been opening unprecedented opportunities for realizing quantum functional nanophotonic devices and also quantum information devices. In particular, in the field of semiconductor lasers, QDs were introduced as a superior alternative to quantum wells to suppress the temperature dependence of the threshold current in vertical-external-cavity surface-emitting lasers (VECSELs). In this work, a review of properties and development of semiconductor VECSEL devices and QD laser devices is given. Based on the features of VECSEL devices, the main emphasis is put on the recent development of technological approach on semiconductor QD VECSELs. Then, from the viewpoint of both single QD nanolaser and cavity quantum electrodynamics (QED), a single-QD-cavity system resulting from the strong coupling of QD cavity is presented. A difference of this review from the other existing works on semiconductor VECSEL devices is that we will cover both the fundamental aspects and technological approaches of QD VECSEL devices. And lastly, the presented review here has provided a deep insight into useful guideline for the development of QD VECSEL technology and future quantum functional nanophotonic devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with arXiv:0904.369

    Spatial regularity of InAs-GaAs quantum dots: quantifying the dependence of lateral ordering on growth rate.

    Get PDF
    The lateral ordering of arrays of self-assembled InAs-GaAs quantum dots (QDs) has been quantified as a function of growth rate, using the Hopkins-Skellam index (HSI). Coherent QD arrays have a spatial distribution which is neither random nor ordered, but intermediate. The lateral ordering improves as the growth rate is increased and can be explained by more spatially regular nucleation as the QD density increases. By contrast, large and irregular 3D islands are distributed randomly on the surface. This is consistent with a random selection of the mature QDs relaxing by dislocation nucleation at a later stage in the growth, independently of each QD's surroundings. In addition we explore the statistical variability of the HSI as a function of the number N of spatial points analysed, and we recommend N > 10(3) to reliably distinguish random from ordered arrays

    Clinical relevance of genetic instability in prostatic cells obtained by prostatic massage in early prostate cancer

    Get PDF
    We investigated whether genetic lesions such as loss of heterozygosity (LOH) are detected in prostatic cells obtained by prostatic massage during early diagnosis of prostate cancer (CaP) and discussed their clinical relevance. Blood and first urine voided after prostatic massage were collected in 99 patients with total prostate-specific antigen (PSA) between 4 and 10 ng ml−1, prior to prostate biopsies. Presence of prostatic cells was confirmed by quantitative RT–PCR analysis of PSA mRNA. Genomic DNA was analysed for LOH on six chromosomal regions. One or more allelic deletions were found in prostatic fluid from 57 patients analysed, of whom 33 (58%) had CaP. Sensitivity and specificity of LOH detection and PSA free to total ratio <15% for positive biopsy were respectively 86.7 and 44% (P=0.002) for LOH, and 55 and 74% (P=0.006) for PSA ratio <15%. Analysis of LOH obtained from prostatic tumours revealed similar patterns compared to prostatic fluid cells in 86% of cases, confirming its accuracy. The presence of LOH of urinary prostatic cells obtained after prostatic massage is significantly associated with CaP on biopsy and may potentially help to identify a set of patients who are candidates for further prostate biopsies

    High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers

    Get PDF
    Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules

    Intermediate-band dynamics of quantum dots solar cell in concentrator photovoltaic modules

    Get PDF
    We report for the first time a successful fabrication and operation of an InAs/GaAs quantum dot based intermediate band solar cell concentrator photovoltaic (QD-IBSC-CPV) module to the IEC62108 standard with recorded power conversion efficiency of 15.3%. Combining the measured experimental results at Underwriters Laboratory (ULH) licensed testing laboratory with theoretical simulations, we confirmed that the operational characteristics of the QD-IBSC-CPV module are a consequence of the carrier dynamics via the intermediate-band at room temperature

    A Virtual Testing Approach for Laminated Composites Based on Micromechanics

    Get PDF
    International audienceThe chapter deals with a crucial question for the design of composite structures: how can one predict the evolution of damage up to and including final fracture? Virtual testing, whose goal is to drastically reduce the huge number of industrial tests involved in current characterization procedures, constitutes one of today’s main industrial challenges. In this work, one revisits our multiscale modeling answer through its practical aspects. Some complements regarding identification, kinking, and crack initiation are also given. Finally, the current capabilities and limits of this approach are discussed, as well as the computational challenges that are inherent to “Virtual Structural Testing.

    Ebola and Marburg Hemorrhagic Fevers: Neglected Tropical Diseases?

    Get PDF
    Ebola hemorrhagic fever (EHF) and Marburg hemorrhagic fever (MHF) are rare viral diseases, endemic to central Africa. The overall burden of EHF and MHF is small in comparison to the more common protozoan, helminth, and bacterial diseases typically referred to as neglected tropical diseases (NTDs). However, EHF and MHF outbreaks typically occur in resource-limited settings, and many aspects of these outbreaks are a direct consequence of impoverished conditions. We will discuss aspects of EHF and MHF disease, in comparison to the “classic” NTDs, and examine potential ways forward in the prevention and control of EHF and MHF in sub-Saharan Africa, as well as examine the potential for application of novel vaccines or antiviral drugs for prevention or control of EHF and MHF among populations at highest risk for disease

    Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial

    Get PDF
    Background: Elevated proinflammatory cytokines are associated with greater COVID-19 severity. We aimed to assess safety and efficacy of sarilumab, an interleukin-6 receptor inhibitor, in patients with severe (requiring supplemental oxygen by nasal cannula or face mask) or critical (requiring greater supplemental oxygen, mechanical ventilation, or extracorporeal support) COVID-19. Methods: We did a 60-day, randomised, double-blind, placebo-controlled, multinational phase 3 trial at 45 hospitals in Argentina, Brazil, Canada, Chile, France, Germany, Israel, Italy, Japan, Russia, and Spain. We included adults (≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and pneumonia, who required oxygen supplementation or intensive care. Patients were randomly assigned (2:2:1 with permuted blocks of five) to receive intravenous sarilumab 400 mg, sarilumab 200 mg, or placebo. Patients, care providers, outcome assessors, and investigators remained masked to assigned intervention throughout the course of the study. The primary endpoint was time to clinical improvement of two or more points (seven point scale ranging from 1 [death] to 7 [discharged from hospital]) in the modified intention-to-treat population. The key secondary endpoint was proportion of patients alive at day 29. Safety outcomes included adverse events and laboratory assessments. This study is registered with ClinicalTrials.gov, NCT04327388; EudraCT, 2020-001162-12; and WHO, U1111-1249-6021. Findings: Between March 28 and July 3, 2020, of 431 patients who were screened, 420 patients were randomly assigned and 416 received placebo (n=84 [20%]), sarilumab 200 mg (n=159 [38%]), or sarilumab 400 mg (n=173 [42%]). At day 29, no significant differences were seen in median time to an improvement of two or more points between placebo (12·0 days [95% CI 9·0 to 15·0]) and sarilumab 200 mg (10·0 days [9·0 to 12·0]; hazard ratio [HR] 1·03 [95% CI 0·75 to 1·40]; log-rank p=0·96) or sarilumab 400 mg (10·0 days [9·0 to 13·0]; HR 1·14 [95% CI 0·84 to 1·54]; log-rank p=0·34), or in proportions of patients alive (77 [92%] of 84 patients in the placebo group; 143 [90%] of 159 patients in the sarilumab 200 mg group; difference −1·7 [−9·3 to 5·8]; p=0·63 vs placebo; and 159 [92%] of 173 patients in the sarilumab 400 mg group; difference 0·2 [−6·9 to 7·4]; p=0·85 vs placebo). At day 29, there were numerical, non-significant survival differences between sarilumab 400 mg (88%) and placebo (79%; difference +8·9% [95% CI −7·7 to 25·5]; p=0·25) for patients who had critical disease. No unexpected safety signals were seen. The rates of treatment-emergent adverse events were 65% (55 of 84) in the placebo group, 65% (103 of 159) in the sarilumab 200 mg group, and 70% (121 of 173) in the sarilumab 400 mg group, and of those leading to death 11% (nine of 84) were in the placebo group, 11% (17 of 159) were in the sarilumab 200 mg group, and 10% (18 of 173) were in the sarilumab 400 mg group. Interpretation: This trial did not show efficacy of sarilumab in patients admitted to hospital with COVID-19 and receiving supplemental oxygen. Adequately powered trials of targeted immunomodulatory therapies assessing survival as a primary endpoint are suggested in patients with critical COVID-19. Funding: Sanofi and Regeneron Pharmaceuticals
    corecore