4,878 research outputs found

    The Planck-LFI instrument: analysis of the 1/f noise and implications for the scanning strategy

    Get PDF
    We study the impact of the 1/f noise on the PLANCK Low Frequency Instrument (LFI) osbervations (Mandolesi et al 1998) and describe a simple method for removing striping effects from the maps for a number of different scanning stategies. A configuration with an angle between telescope optical axis and spin-axis just less than 90 degrees (namely 85 degress) shows good destriping efficiency for all receivers in the focal plane, with residual noise degradation < 1-2 %. In this configuration, the full sky coverage can be achieved for each channel separately with a 5 degrees spin-axis precession to maintain a constant solar aspect angle.Comment: submitted to Astronomy and Astrophysics, 12 pages, 15 PostSript figure

    Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton

    Full text link
    The three Minkowski functionals and the recently defined length of the skeleton are estimated for the co-added first-year Wilkinson Microwave Anisotropy Probe (WMAP) data and compared with 5000 Monte Carlo simulations, based on Gaussian fluctuations with the a-priori best-fit running-index power spectrum and WMAP-like beam and noise properties. Several power spectrum-dependent quantities, such as the number of stationary points, the total length of the skeleton, and a spectral parameter, gamma, are also estimated. While the area and length Minkowski functionals and the length of the skeleton show no evidence for departures from the Gaussian hypothesis, the northern hemisphere genus has a chi^2 that is large at the 95% level for all scales. For the particular smoothing scale of 3.40 degrees FWHM it is larger than that found in 99.5% of the simulations. In addition, the WMAP genus for negative thresholds in the northern hemisphere has an amplitude that is larger than in the simulations with a significance of more than 3 sigma. On the smallest angular scales considered, the number of extrema in the WMAP data is high at the 3 sigma level. However, this can probably be attributed to the effect of point sources. Finally, the spectral parameter gamma is high at the 99% level in the northern Galactic hemisphere, while perfectly acceptable in the southern hemisphere. The results provide strong evidence for the presence of both non-Gaussian behavior and an unexpected power asymmetry between the northern and southern hemispheres in the WMAP data.Comment: 17 pages, 10 figures, accepted for publication in Ap

    Estimates of multipolar coefficients to search for cosmic ray anisotropies with non-uniform or partial sky coverage

    Full text link
    We study the possibility to extract the multipolar moments of an underlying distribution from a set of cosmic rays observed with non-uniform or even partial sky coverage. We show that if the degree is assumed to be upper bounded by LL, each multipolar moment can be recovered whatever the coverage, but with a variance increasing exponentially with the bound LL if the coverage is zero somewhere. Despite this limitation, we show the possibility to test predictions of a model without any assumption on LL by building an estimate of the covariance matrix seen through the exposure function.Comment: 20 pages, 8 figure

    Bayesian analysis of the low-resolution polarized 3-year WMAP sky maps

    Get PDF
    We apply a previously developed Gibbs sampling framework to the foreground corrected 3-yr WMAP polarization data and compute the power spectrum and residual foreground template amplitude posterior distributions. We first analyze the co-added Q- and V-band data, and compare our results to the likelihood code published by the WMAP team. We find good agreement, and thus verify the numerics and data processing steps of both approaches. However, we also analyze the Q- and V-bands separately, allowing for non-zero EB cross-correlations and including two individual foreground template amplitudes tracing synchrotron and dust emission. In these analyses, we find tentative evidence of systematics: The foreground tracers correlate with each of the Q- and V-band sky maps individually, although not with the co-added QV map; there is a noticeable negative EB cross-correlation at l <~ 16 in the V-band map; and finally, when relaxing the constraints on EB and BB, noticeable differences are observed between the marginalized band powers in the Q- and V-bands. Further studies of these features are imperative, given the importance of the low-l EE spectrum on the optical depth of reionization tau and the spectral index of scalar perturbations n_s.Comment: 5 pages, 4 figures, submitted to ApJ
    • …
    corecore