3,466 research outputs found

    User oriented ERTS-1 images

    Get PDF
    Photographic reproduction of ERTS-1 images are capable of displaying only a portion of the total information available from the multispectral scanner. Methods are being developed to generate ERTS-1 images oriented towards special users such as agriculturists, foresters, and hydrologists by applying image enhancement techniques and interactive statistical classification schemes. Spatial boundaries and linear features can be emphasized and delineated using simple filters. Linear and nonlinear transformations can be applied to the spectral data to emphasize certain ground information. An automatic classification scheme was developed to identify particular ground cover classes such as fallow, grain, rape seed or various vegetation covers. The scheme applies the maximum likelihood decision rule to the spectral information and classifies the ERTS-1 image on a pixel by pixel basis. Preliminary results indicate that the classifier has limited success in distinguishing crops, but is well adapted for identifying different types of vegetation

    Reversible strain effect on the magnetization of LaCoO3 films

    Full text link
    The magnetization of ferromagnetic LaCoO3 films grown epitaxially on piezoelectric substrates has been found to systematically decrease with the reduction of tensile strain. The magnetization change induced by the reversible strain variation reveals an increase of the Co magnetic moment with tensile strain. The biaxial strain dependence of the Curie temperature is estimated to be below 4K/% in the as-grown tensile strain state of our films. This is in agreement with results from statically strained films on various substrates

    Geological mapping of Sierra Leone : baseline assessment and next steps

    Get PDF
    Sierra Leone is a resource-rich country, with extensive known and potential mineral and petroleum resources. However, knowledge about the geology of the country is limited, with very little modern data in the public domain, and this hinders sustainable development of these resources for the national good. The lack of data is now being addressed by the Extractive Industries Technical Assistance Programme Phase 2 (EITAP 2) which is funded by the World Bank, and which aims to deliver a national airborne geophysical survey and subsequent geological mapping of the country (World Bank, 2017). Alongside EITAP 2, the UK government is funding the British Geological Survey (BGS) to work in partnership with relevant institutions in Sierra Leone, including the National Minerals Agency (NMA), the Petroleum Directorate (PD) and Fourah Bay College (FBC), to build their capacity to collect, manage and disseminate geological data. As part of that work, a field reconnaissance was carried out across Sierra Leone in January 2018 to assess the state of current geological mapping, visit mines and exploration projects, and to discuss how best to plan and carry out a mapping programme. The field trip was led by three British Geological Survey (BGS) staff members (Kathryn Goodenough, Jon Ford, and Darren Jones) together with 11 geologists from the NMA, two geologists from the PD, and two staff members from the Geology Department at Fourah Bay College. Pauline Scott and Avril Jamieson from the Department for International Development (DFID) joined the first two days of the trip. This report describes the conclusions arising from that field reconnaissance and associated literature review, including a baseline assessment of the current geological mapping of Sierra Leone, and suggestions for next steps. Some information is also derived from separate field visits to the AMR Gold licence area in the Loko Hills (April 2017) and coastal outcrops in the Lungi area (June 2017)

    Electric-field control of magnetic ordering in the tetragonal BiFeO3

    Full text link
    We propose a way to use electric-field to control the magnetic ordering of the tetragonal BiFeO3. Based on systematic first-principles studies of the epitaxial strain effect on the ferroelectric and magnetic properties of the tetragonal BiFeO3, we find that there exists a transition from C-type to G-type antiferromagnetic (AFM) phase at in-plane constant a ~ 3.905 {\AA} when the ferroelectric polarization is along [001] direction. Such magnetic phase transition can be explained by the competition between the Heisenberg exchange constant J1c and J2c under the influence of biaxial strain. Interestingly, when the in-plane lattice constant enlarges, the preferred ferroelectric polarization tends to be canted and eventually lies in the plane (along [110] direction). It is found that the orientation change of ferroelectric polarization, which can be realized by applying external electric-field, has significant impact on the Heisenberg exchange parameters and therefore the magnetic orderings of tetragonal BiFeO3. For example, at a ~ 3.79 {\AA}, an electric field along [111] direction with magnitude of 2 MV/cm could change the magnetic ordering from C-AFM to G-AFM. As the magnetic ordering affects many physical properties of the magnetic material, e.g. magnetoresistance, we expect such strategy would provide a new avenue to the application of multiferroic materials.Comment: 4 pages, 4 figure

    Phase formation, phonon behavior, and magnetic properties of novel ferromagnetic La3BAlMnO9 (B = Co or Ni) triple perovskites

    Full text link
    In the quest for novel magnetoelectric materials, we have grown, stabilized and explored the properties of La3BAlMnO9 (B = Co or Mn) thin films. In this paper, we report the influence of the growth parameters that promote B/Al/Mn ordering in the pseudo-cubic unit cell and their likely influence on the magnetic and multiferroic properties. The temperature dependence of the magnetization shows that La3CoAlMnO9 is ferromagnetic up to 190 K while La3NiAlMnO9 shows a TC of 130 K. The behavior of these films are compared and contrasted with related La2BMnO6 double perovskites. It is observed that the insertion of AlO6 octahedra between CoO6 and MnO6 suppresses significantly the strength of the superexchange interaction, spin-phonon and spin-polar coupling.Comment: 13 pages, 3 fig

    Long-range Ni/Mn structural order in epitaxial double perovskite La2NiMnO6 thin films

    Full text link
    We report and compare the structural, magnetic, and optical properties of ordered La2NiMnO6 thin films and its disordered LaNi0.5Mn0.5O3 counterpart. An x-ray diffraction study reveals that the B-site Ni/Mn ordering induces additional XRD reflections as the crystal symmetry is transformed from a pseudocubic perovskite unit cell in the disordered phase to a monoclinic form with larger lattice parameters for the ordered phase. Polarized Raman spectroscopy studies reveal that the ordered samples are characterized by additional phonon excitations that are absent in the disordered phase. The appearance of these additional phonon excitations is interpreted as the clearest signature of Brillouin zone folding as a result of the long-range Ni/Mn ordering in La2NiMnO6. Both ordered and disordered materials display a single ferromagnetic-to-paramagnetic transition. The ordered films display also a saturation magnetization close to 4.8 mB/f.u. and a transition temperature (FM-TC) around 270 K, while the disordered ones have only a 3.7 mB/f.u. saturation magnetization and a FM-TC around 138 K. The differences in their magnetic behaviours are understood based on the distinct local electronic configurations of their Ni/Mn cations.Comment: 15 pages, 5 fig

    CCRS proposal for evaluating LANDSAT-D MSS and TM data

    Get PDF
    Accomplishments in the evaluation of LANDSAT 4 data are reported. The objectives of the Canadian proposal are: (1) to quantify the LANDSAT-4 sensors and system performance for the purpose of updating the radiometric and geometric correction algorithms for MSS and for developing and evaluating new correction algorithms to be used for TM data processing; (2) to compare and access the degree to which LANDSAT-4 MSS data can be integrated with MSS imagery acquired from earlier LANDSAT missions; and (3) to apply image analysis and information extraction techniques for specific user applications such as forestry or agriculture

    Electronic structure and magnetic properties of pyroxenes (Li,Na)TM(Si,Ge)2O6: novel low-dimensional magnets with 90 bonds

    Full text link
    The results of the LSDA+U calculations for pyroxenes with diverse magnetic properties (Li,Na)TM(Si,Ge)2_2O6_6, where TM is the transition metal ion (Ti,V,Cr,Mn,Fe), are presented. We show that the anisotropic orbital ordering results in the spin-gap formation in NaTiSi2_2O6_6. The detailed analysis of different contributions to the intrachain exchange interactions for pyroxenes is performed both analytically using perturbation theory and basing on the results of the band structure calculations. The antiferromagnetic t2g−t2gt_{2g}-t_{2g} exchange is found to decrease gradually in going from Ti to Fe. It turns out to be nearly compensated by ferromagnetic interaction between half-filled t2gt_{2g} and empty ege_g orbitals in Cr-based pyroxenes. The fine-tuning of the interaction parameters by the crystal structure results in the ferromagnetism for NaCrGe2_2O6_6. Further increase of the total number of electrons and occupation of ege_g sub-shell makes the t2g−egt_{2g}-e_g contribution and total exchange interaction antiferromagnetic for Mn- and Fe-based pyroxenes. Strong oxygen polarization was found in Fe-based pyroxenes. It is shown that this effect leads to a considerable reduction of antiferromagnetic intrachain exchange. The obtained results may serve as a basis for the analysis of diverse magnetic properties of pyroxenes, including those with recently discovered multiferroic behavior.Comment: 11 pages, 10 figure

    Structural relaxation due to electronic correlations in the paramagnetic insulator KCuF3

    Full text link
    A computational scheme for the investigation of complex materials with strongly interacting electrons is formulated which is able to treat atomic displacements, and hence structural relaxation, caused by electronic correlations. It combines ab initio band structure and dynamical mean-field theory and is implemented in terms of plane-wave pseudopotentials. The equilibrium Jahn-Teller distortion and antiferro-orbital order found for paramagnetic KCuF3 agree well with experiment.Comment: 4 pages, 3 figure
    • …
    corecore