816 research outputs found

    The Coulomb interaction in Helium-3: Interplay of strong short-range and weak long-range potentials

    Get PDF
    Quantum chromodynamics and the electroweak theory at low energies are prominent instances of the combination of a short-range and a long-range interaction. For the description of light nuclei, the large nucleon-nucleon scattering lengths produced by the strong interaction, and the reduction of the weak interaction to the Coulomb potential, play a crucial role. Helium-3 is the first bound nucleus comprised of more than one proton in which this combination of forces can be studied. We demonstrate a proper renormalization of Helium-3 using the pionless effective field theory as the formal representation of the nuclear regime as strongly interacting fermions. The theory is found consistent at leading and next-to-leading order without isospin-symmetry-breaking 3-nucleon interactions and a non-perturbative treatment of the Coulomb interaction. The conclusion highlights the significance of the regularization method since a comparison to previous work is contradictory if the difference in those methods is not considered. With a perturbative Coulomb interaction, as suggested by dimensional analysis, we find the Helium-3 system properly renormalized, too. For both treatments, renormalization-scheme independence of the effective field theory is demonstrated by regulating the potential and a variation of the associated cutoff.Comment: accepted version; additional figure; additional discussion of renorm. and limit cycl

    Neutrino Breakup of A=3 Nuclei in Supernovae

    Get PDF
    We extend the virial equation of state to include 3H and 3He nuclei, and predict significant mass-three fractions near the neutrinosphere in supernovae. While alpha particles are often more abundant, we demonstrate that energy transfer cross-sections for muon and tau neutrinos at low densities are dominated by breakup of the loosely-bound 3H and 3He nuclei. The virial coefficients involving A=3 nuclei are calculated directly from the corresponding nucleon-3H and nucleon-3He scattering phase shifts. For the neutral-current inelastic cross-sections and the energy transfer cross sections, we perform ab-initio calculations based on microscopic two- and three-nucleon interactions and meson-exchange currents.Comment: 6 pages, 2 figures, minor additions, to appear in Phys. Rev.

    Theory of the spontaneous buckling of doped graphene

    Get PDF
    Graphene is a realization of an esoteric class of materials -- electronic crystalline membranes. We study the interplay between the free electrons and the two-dimensional crystal, and find that it induces a substantial effect on the elastic structure of the membrane. For the hole-doped membrane, in particular, we predict a spontaneous buckling. In addition, attenuation of elastic waves is expected, due to the effect of corrugations on the bulk modulus. These discoveries have a considerable magnitude in graphene, affecting both its mesoscopic structure, and its electrical resistivity, which has an inherent asymmetry between hole- and electron-doped graphene.Comment: Accepted for publication in PR

    Spin-dependent WIMP scattering off nuclei

    Full text link
    Chiral effective field theory (EFT) provides a systematic expansion for the coupling of WIMPs to nucleons at the momentum transfers relevant to direct cold dark matter detection. We derive the currents for spin-dependent WIMP scattering off nuclei at the one-body level and include the leading long-range two-body currents, which are predicted in chiral EFT. As an application, we calculate the structure factor for spin-dependent WIMP scattering off 129,131Xe nuclei, using nuclear interactions that have been developed to study nuclear structure and double-beta decays in this region. We provide theoretical error bands due to the nuclear uncertainties of WIMP currents in nuclei.Comment: 6 pages, 3 figures, published versio

    Effects of three-nucleon forces and two-body currents on Gamow-Teller strengths

    Get PDF
    We optimize chiral interactions at next-to-next-to leading order to observables in two- and three-nucleon systems, and compute Gamow-Teller transitions in carbon-14, oxygen-22 and oxygen-24 using consistent two-body currents. We compute spectra of the daughter nuclei nitrogen-14, fluorine-22 and fluorine-24 via an isospin-breaking coupled-cluster technique, with several predictions. The two-body currents reduce the Ikeda sum rule, corresponding to a quenching factor q^2 ~ 0.84-0.92 of the axial-vector coupling. The half life of carbon-14 depends on the energy of the first excited 1+ state, the three-nucleon force, and the two-body current
    • …
    corecore