1,053 research outputs found

    Isometric fluctuation relations for equilibrium states with broken symmetry

    Full text link
    We derive a set of isometric fluctuation relations, which constrain the order parameter fluctuations in finite-size systems at equilibrium and in the presence of a broken symmetry. These relations are exact and should apply generally to many condensed-matter physics systems. Here, we establish these relations for magnetic systems and nematic liquid crystals in a symmetry-breaking external field, and we illustrate them on the Curie-Weiss and the XYXY models. Our relations also have implications for spontaneous symmetry breaking, which are discussed.Comment: 9 pages, 4 figures, in press for Phys. Rev. Lett. to appear there in Dec. 201

    Classical dynamics on graphs

    Full text link
    We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator which generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms which decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs which converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system which undergoes a diffusion process before it escapes.Comment: 42 pages and 8 figure

    Complexity and non-separability of classical Liouvillian dynamics

    Full text link
    We propose a simple complexity indicator of classical Liouvillian dynamics, namely the separability entropy, which determines the logarithm of an effective number of terms in a Schmidt decomposition of phase space density with respect to an arbitrary fixed product basis. We show that linear growth of separability entropy provides stricter criterion of complexity than Kolmogorov-Sinai entropy, namely it requires that dynamics is exponentially unstable, non-linear and non-markovian.Comment: Revised version, 5 pages (RevTeX), with 6 pdf-figure

    Thermodynamic time asymmetry in nonequilibrium fluctuations

    Get PDF
    We here present the complete analysis of experiments on driven Brownian motion and electric noise in a RCRC circuit, showing that thermodynamic entropy production can be related to the breaking of time-reversal symmetry in the statistical description of these nonequilibrium systems. The symmetry breaking can be expressed in terms of dynamical entropies per unit time, one for the forward process and the other for the time-reversed process. These entropies per unit time characterize dynamical randomness, i.e., temporal disorder, in time series of the nonequilibrium fluctuations. Their difference gives the well-known thermodynamic entropy production, which thus finds its origin in the time asymmetry of dynamical randomness, alias temporal disorder, in systems driven out of equilibrium.Comment: to be published in : Journal of Statistical Mechanics: theory and experimen

    Quantum fingerprints of classical Ruelle-Pollicot resonances

    Full text link
    N-disk microwave billiards, which are representative of open quantum systems, are studied experimentally. The transmission spectrum yields the quantum resonances which are consistent with semiclassical calculations. The spectral autocorrelation of the quantum spectrum is shown to be determined by the classical Ruelle-Pollicot resonances, arising from the complex eigenvalues of the Perron-Frobenius operator. This work establishes a fundamental connection between quantum and classical correlations in open systems.Comment: 6 pages, 2 eps figures included, submitted to PR

    Kinetics and thermodynamics of first-order Markov chain copolymerization

    Full text link
    We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer

    Bohr-Sommerfeld Quantization of Periodic Orbits

    Get PDF
    We show, that the canonical invariant part of â„Ź\hbar corrections to the Gutzwiller trace formula and the Gutzwiller-Voros spectral determinant can be computed by the Bohr-Sommerfeld quantization rules, which usually apply for integrable systems. We argue that the information content of the classical action and stability can be used more effectively than in the usual treatment. We demonstrate the improvement of precision on the example of the three disk scattering system.Comment: revte

    Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity

    Full text link
    We propose a new method, the Helfand-moment method, to compute the shear viscosity by equilibrium molecular dynamics in periodic systems. In this method, the shear viscosity is written as an Einstein-like relation in terms of the variance of the so-called Helfand moment. This quantity, is modified in order to satisfy systems with periodic boundary conditions usually considered in molecular dynamics. We calculate the shear viscosity in the Lennard-Jones fluid near the triple point thanks to this new technique. We show that the results of the Helfand-moment method are in excellent agreement with the results of the standard Green-Kubo method.Comment: Submitted to the Journal of Chemical Physic

    A fluctuation theorem for currents and non-linear response coefficients

    Full text link
    We use a recently proved fluctuation theorem for the currents to develop the response theory of nonequilibrium phenomena. In this framework, expressions for the response coefficients of the currents at arbitrary orders in the thermodynamic forces or affinities are obtained in terms of the fluctuations of the cumulative currents and remarkable relations are obtained which are the consequences of microreversibility beyond Onsager reciprocity relations

    Thermodynamics of Quantum Jump Trajectories

    Full text link
    We apply the large-deviation method to study trajectories in dissipative quantum systems. We show that in the long time limit the statistics of quantum jumps can be understood from thermodynamic arguments by exploiting the analogy between large-deviation and free-energy functions. This approach is particularly useful for uncovering properties of rare dissipative trajectories. We also prove, via an explicit quantum mapping, that rare trajectories of one system can be realized as typical trajectories of an alternative system.Comment: 5 pages, 3 figure
    • …
    corecore