88,595 research outputs found
Reality of Complex Affine Toda Solitons
There are infinitely many topological solitons in any given complex affine
Toda theories and most of them have complex energy density. When we require the
energy density of the solitons to be real, we find that the reality condition
is related to a simple ``pairing condition.'' Unfortunately, rather few soliton
solutions in these theories survive the reality constraint, especially if one
also demands positivity. The resulting implications for the physical
applicability of these theories are briefly discussed.Comment: LaTeX, 15 pages, UBTH-049
On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers
This paper reports a comprehensive study on the gravitational wave (GW)
background from compact binary coalescences. We consider in our calculations
newly available observation-based neutron star and black hole mass
distributions and complete analytical waveforms that include post-Newtonian
amplitude corrections. Our results show that: (i) post-Newtonian effects cause
a small reduction in the GW background signal; (ii) below 100 Hz the background
depends primarily on the local coalescence rate and the average chirp
mass and is independent of the chirp mass distribution; (iii) the effects of
cosmic star formation rates and delay times between the formation and merger of
binaries are linear below 100 Hz and can be represented by a single parameter
within a factor of ~ 2; (iv) a simple power law model of the energy density
parameter up to 50-100 Hz is sufficient to be used
as a search template for ground-based interferometers. In terms of the
detection prospects of the background signal, we show that: (i) detection (a
signal-to-noise ratio of 3) within one year of observation by the Advanced LIGO
detectors (H1-L1) requires a coalescence rate of for binary neutron stars (binary black holes); (ii) this limit on
could be reduced 3-fold for two co-located detectors, whereas the
currently proposed worldwide network of advanced instruments gives only ~ 30%
improvement in detectability; (iii) the improved sensitivity of the planned
Einstein Telescope allows not only confident detection of the background but
also the high frequency components of the spectrum to be measured. Finally we
show that sub-threshold binary neutron star merger events produce a strong
foreground, which could be an issue for future terrestrial stochastic searches
of primordial GWs.Comment: A few typos corrected to match the published version in MNRA
Current-Induced Polarization and the Spin Hall Effect at Room Temperature
Electrically-induced electron spin polarization is imaged in n-type ZnSe
epilayers using Kerr rotation spectroscopy. Despite no evidence for an
electrically-induced internal magnetic field, current-induced in-plane spin
polarization is observed with characteristic spin lifetimes that decrease with
doping density. The spin Hall effect is also observed, indicated by an
electrically-induced out-of-plane spin polarization with opposite sign for
spins accumulating on opposite edges of the sample. The spin Hall conductivity
is estimated as 3 +/- 1.5 Ohms**-1 m**-1/|e| at 20 K, which is consistent with
the extrinsic mechanism. Both the current-induced spin polarization and the
spin Hall effect are observed at temperatures from 10 K to 295 K.Comment: 5 pages, 4 figure
Vibrational coherence in electron spin resonance in nanoscale oscillators
We study a scheme for electrical detection, using electron spin resonance, of
coherent vibrations in a molecular single electron level trapped near a
conduction channel. Both equilibrium spin-currents and non-equilibrium spin-
and charge currents are investigated. Inelastic side-band anti-resonances
corresponding to the vibrational modes appear in the electron spin resonance
spectrum.Comment: 4 pages, 3 figures: Published versio
Influence of skew and cross-coupling on flux-weakening performance of permanent-magnet brushless AC machines
A method is proposed for predicting the flux-weakening performance of permanent-magnet (PM) brushless ac machines accounting for skew and d-q axis cross-coupling. The method is based on a d-q-axis flux-linkage model, a hybrid 2-D finite-element (FE)-analytical method being used to predict the d- and q-axis inductances. However, it only requires 2-D FE analysis of the magnetic field distribution over a cross section of the machine. The developed method is used to predict the torque-speed characteristic of an interior PM brushless ac machine with one stator slot-pitch skew. This is compared with predictions from a direct FE analysis of the machine and validated by measurements
Internal magnetic fields in thin ZnSe epilayers
Strain induced spin-splitting is observed and characterized using pump-probe
Kerr rotation spectroscopy in n-ZnSe epilayers grown on GaAs substrates. The
spin-splitting energies are mapped out as a function of pump-probe separation,
applied voltage, and temperature in a series of samples of varying epilayer
thicknesses and compressive strain arising from epilayer-substrate lattice
mismatch. The strain is independently quantified using photoluminescence and
x-ray diffraction measurements. We observe that the magnitude of the spin
splitting increases with applied voltage and temperature, and is highly crystal
direction dependent, vanishing along [1 1-bar 0].Comment: 9 pages, 3 figure
Measuring Accuracy of Triples in Knowledge Graphs
An increasing amount of large-scale knowledge graphs have been constructed in recent years. Those graphs are often created from text-based extraction, which could be very noisy. So far, cleaning knowledge graphs are often carried out by human experts and thus very inefficient. It is necessary to explore automatic methods for identifying and eliminating erroneous information. In order to achieve this, previous approaches primarily rely on internal information i.e. the knowledge graph itself. In this paper, we introduce an automatic approach, Triples Accuracy Assessment (TAA), for validating RDF triples (source triples) in a knowledge graph by finding consensus of matched triples (among target triples) from other knowledge graphs. TAA uses knowledge graph interlinks to find identical resources and apply different matching methods between the predicates of source triples and target triples. Then based on the matched triples, TAA calculates a confidence score to indicate the correctness of a source triple. In addition, we present an evaluation of our approach using the FactBench dataset for fact validation. Our findings show promising results for distinguishing between correct and wrong triples
- …