122 research outputs found

    Matrilineal behavioral and physiological changes following the death of a non-alpha matriarch in rhesus macaque

    Get PDF
    In many species, the loss of alpha matriarchs is associated with a number of negative outcomes such as troop fission, eviction, wounding, and reduced vitality. However, whether the dramatic consequences of their loss are due to their role as an old experienced figure or to their alpha status remains unclear. In a retrospective study, we tested that in a semi-free ranging colony of rhesus macaques (Macaca mulatta), the removal of a non-alpha matriarch, who had a large set of kin, led to changes in behavior and physiological stress within her matriline. Following her removal, her matriline increased in aggression, vigilance, and social grooming. Additionally, hierarchical stability, measured by levels of rank changes, decreased within her matriline, and levels of intense aggression by high-ranking animals were more frequent, as well as matrilineal wounding. Although ordinal rank was positively associated with higher chronic hair cortisol concentrations (HCCs) in the months before the matriarch’s removal, following her removal, only those who experienced large increases in rank within her matriline displayed higher HCCs. Changes in matrilineal stability, aggression, behavior, and HCCs within the other two matrilines in the troop were not evident, although caution is needed due to the small sample sizes. We conclude that the removal of the non-alpha matriarch led to matrilineal instability, characterized by higher levels of aggression and subsequent vigilance, rank changes, physiological stress, and grooming. We suggest that non-alpha matriarchs with a large number of kin and social support can be integral to the stability of matrilines.Division of Intramural Research, National Institute of Child Health and Human Development, 1ZIAHD001107- 3

    Dietary Habits of Rhesus Monkeys Macaca mulatta in Indian Forests

    No full text
    Volume: 73Start Page: 261End Page: 26

    A device to record primate social behavior

    No full text

    Giant panda conservation science: how far we have come

    No full text
    The giant panda is a conservation icon, but science has been slow to take up its cause in earnest. In the past decade, researchers have been making up for lost time, as reflected in the flurry of activity reported at the symposium Conservation Science for Giant Pandas and Their Habitat at the 2009 International Congress for Conservation Biology (ICCB) in Beijing. In reports addressing topics ranging from spatial ecology to molecular censusing, from habitat recovery in newly established reserves to earthquake-induced habitat loss, from new insights into factors limiting carrying capacity to the uncertain effects of climate change, this symposium displayed the vibrant and blossoming application of science to giant panda conservation. Collectively, we find that we have come a long way, but we also reach an all-too-familiar conclusion: the more we know, the more challenges are revealed. While many earlier findings are supported, many of our assumptions are debatable. Here we discuss recent advancements in conservation science for giant pandas and suggest that the way forward is more direct application of emerging science to management and policy
    corecore