43,739 research outputs found

    Optical Resonator Analog of a Two-Dimensional Topological Insulator

    Full text link
    A lattice of optical ring resonators can exhibit a topological insulator phase, with the role of spin played by the direction of propagation of light within each ring. Unlike the system studied by Hafezi et al., topological protection is achieved without fine-tuning the inter-resonator couplings, which are given the same periodicity as the underlying lattice. The topological insulator phase occurs for strong couplings, when the tight-binding method is inapplicable. Using the transfer matrix method, we derive the bandstructure and phase diagram, and demonstrate the existence of robust edge states. When gain and loss are introduced, the system functions as a diode for coupled resonator modes.Comment: 10 pages, 9 figure

    An efficient mixed variational reduced order model formulation for non-linear analyses of elastic shells

    Get PDF
    The Koiter-Newton method had recently demonstrated a superior performance for non-linear analyses of structures, compared to traditional path-following strategies. The method follows a predictor-corrector scheme to trace the entire equilibrium path. During a predictor step a reduced order model is constructed based on Koiter's asymptotic post-buckling theory which is followed by a Newton iteration in the corrector phase to regain the equilibrium of forces. In this manuscript, we introduce a robust mixed solid-shell formulation to further enhance the efficiency of stability analyses in various aspects. We show that a Hellinger-Reissner variational formulation facilitates the reduced order model construction omitting an expensive evaluation of the inherent fourth order derivatives of the strain energy. We demonstrate that extremely large step sizes with a reasonable out-of-balance residual can be obtained with substantial impact on the total number of steps needed to trace the complete equilibrium path. More importantly, the numerical effort of the corrector phase involving a Newton iteration of the full order model is drastically reduced thus revealing the true strength of the proposed formulation. We study a number of problems from engineering and compare the results to the conventional approach in order to highlight the gain in numerical efficiency for stability problems

    Modelling Time-varying Dark Energy with Constraints from Latest Observations

    Full text link
    We introduce a set of two-parameter models for the dark energy equation of state (EOS) w(z)w(z) to investigate time-varying dark energy. The models are classified into two types according to their boundary behaviors at the redshift z=(0,)z=(0,\infty) and their local extremum properties. A joint analysis based on four observations (SNe + BAO + CMB + H0H_0) is carried out to constrain all the models. It is shown that all models get almost the same χmin2469\chi^2_{min}\simeq 469 and the cosmological parameters (ΩM,h,Ωbh2)(\Omega_M, h, \Omega_bh^2) with the best-fit results (0.28,0.70,2.24)(0.28, 0.70, 2.24), although the constraint results on two parameters (w0,w1)(w_0, w_1) and the allowed regions for the EOS w(z)w(z) are sensitive to different models and a given extra model parameter. For three of Type I models which have similar functional behaviors with the so-called CPL model, the constrained two parameters w0w_0 and w1w_1 have negative correlation and are compatible with the ones in CPL model, and the allowed regions of w(z)w(z) get a narrow node at z0.2z\sim 0.2. The best-fit results from the most stringent constraints in Model Ia give (w0,w1)=(0.960.21+0.26,0.120.89+0.61)(w_0,w_1) = (-0.96^{+0.26}_{-0.21}, -0.12^{+0.61}_{-0.89}) which may compare with the best-fit results (w0,w1)=(0.970.18+0.22,0.151.33+0.85)(w_0,w_1) = (-0.97^{+0.22}_{-0.18}, -0.15^{+0.85}_{-1.33}) in the CPL model. For four of Type II models which have logarithmic function forms and an extremum point, the allowed regions of w(z)w(z) are found to be sensitive to different models and a given extra parameter. It is interesting to obtain two models in which two parameters w0w_0 and w1w_1 are strongly correlative and appropriately reduced to one parameter by a linear relation w1(1+w0)w_1 \propto (1+w_0).Comment: 30 pages, 7 figure

    Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles

    Full text link
    A formula suitable for a quantitative evaluation of the tunneling effect in a ferromagnetic particle is derived with the help of the instanton method. The tunneling between n-th degenerate states of neighboring wells is dominated by a periodic pseudoparticle configuration. The low-lying level-splitting previously obtained with the LSZ method in field theory in which the tunneling is viewed as the transition of n bosons induced by the usual (vacuum) instanton is recovered. The observation made with our new result is that the tunneling effect increases at excited states. The results should be useful in analyzing results of experimental tests of macroscopic quantum coherence in ferromagnetic particles.Comment: 18 pages, LaTex, 1 figur

    Non-Markov dynamics and phonon decoherence of a double quantum dot charge qubit

    Full text link
    In this paper we investigate decoherence times of a double quantum dot (DQD) charge qubit due to it coupling with acoustic phonon baths. We individually consider the acoustic piezoelectric as well as deformation coupling phonon baths in the qubit environment. The decoherence times are calculated with two kinds of methods. One of them is based on the qusiadiabatic propagator path integral (QUAPI) and the other is based on Bloch equations, and two kinds of results are compared. It is shown that the theoretical decoherence times of the DQD charge qubit are shorter than the experimental reported results. It implies that the phonon couplings to the qubit play a subordinate role, resulting in the decoherence of the qubit.Comment: 5 pages, 4 figure
    corecore