16 research outputs found

    Барьеры для инжекции электронов и дырок из подложки кремния в ВЧ-магнетронно напыленные пленки In2O3 : Er

    Get PDF
    The In2O3 : Er films were deposited on Si substrates by the RF magnetron sputtering technique. For the Si substrates of both n- and p-type the current through the MOS-structure (Si/In2O3 : Er/In-contact) was described by the thermionic emission of the main currents over the barrier, with the correction of the applied voltage into the partial voltage drop in silicon. By the temperature dependence measurements of the forward currents at small under-barrier biases the barriers for the current injection from Si into the films were found equal to the 0.14 eV and 0.3 eV for the electrons and holes accordingly. The obtained small barrier for the holes is described by the presence of the defect state density. It tails from the valence band maximum into the In2O3 : Er band gap and provides there the conduction channel for holes. The defect state density in the In2O3 : Er band gap is proved by the PL data in the respective energy range 1.55–3 eV. The band analysis for the hetero-structure Si/In2O3 : Er is performed. It gives the energy gap between the electrons in the In2O3 : Er conduction band and the holes in the band gap channel equal to the 1.56 eV.Пленки In2O3 : Er были напылены на подложки кремния с помощью ВЧ-магнетронного распыления-осаждения. Для подложек кремния как n-, так и p-типа проводимости токи через полученные МОП-структуры (Si/In2O3 : Er/In-контакт) были описаны в рамках модели термоэмиссии основных носителей через барьер с коррекцией приложенного напряжения на потенциал, падающий в кремнии. С помощью измерения температурной зависимости прямых токов при малом, подбарьерном смещении были найдены барьеры для инжекции электронов и дырок из кремния в пленки, равные 0,14 и 0,3 эВ, соответственно. Полученный невысокий барьер для дырок объясняется наличием плотности дефектных состояний, которые простираются от края зоны валентности в запрещенную зону In2O3 : Er и создают там канал проводимости для дырок. Наличие плотности дефектных состояний в запрещенной зоне In2O3 : Er подтверждается данными фотолюминесценции в соответствующем интервале энергий 1,55—3,0 эВ. Выполнен анализ зонной структура гетероперехода Si/In2O3 : Er. На его основе установлен энергетический интервал между электронами в зоне проводимости In2O3 : Er и дырками в канале проводимости в запрещенной зоне, равный 1,56 эВ.

    Tunable hot-carrier photodetection beyond the bandgap spectral limit

    Get PDF
    The spectral response of common optoelectronic photodetectors is restricted by a cutoff wavelength limit λ that is related to the activation energy (or bandgap) of the semiconductor structure (or material) (Δ) through the relationship λ = hc/Δ. This spectral rule dominates device design and intrinsically limits the long-wavelength response of a semiconductor photodetector. Here, we report a new, long-wavelength photodetection principle based on a hot-cold hole energy transfer mechanism that overcomes this spectral limit. Hot carriers injected into a semiconductor structure interact with cold carriers and excite them to higher energy states. This enables a very long-wavelength infrared response. In our experiments, we observe a response up to 55 μm, which is tunable by varying the degree of hot-hole injection, for a GaAs/AlGaAs sample with Δ = 0.32 eV (equivalent to 3.9 μm in wavelength)

    Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si\In2O3:Er films.

    No full text
    RF magnetron-deposited Si\In _2 O _3 :Er films have the structure of the single-crystalline bixbyite bcc In _2 O _3 nanowires bunched into the columns extended across the films. The obtained films have a typical In _2 O _3 optical band gap of 3.55 eV and demonstrate the 1.54 μ m Er ^3+ room temperature photoluminescence. The current across the film flows inside the columns through the nanowires. The current through the MOS-structure with the intermediate low barrier In _2 O _3 :Er dielectric was investigated by the thermionic emission approach, with respect to the partial voltage drop in silicon. Schottky plots ln(I/T ^2 ) versus 1 /kT of forward currents at small biases and backward currents in saturation give the electron forward n-Si\In _2 O _3 :Er barrier equal to 0.14 eV and the backward In\In _2 O _3 :Er barrier equal to 0.21 eV
    corecore