955 research outputs found

    Model-Independent Comparisons of Pulsar Timings to Scalar-Tensor Gravity

    Full text link
    Observations of pulsar timing provide strong constraints on scalar-tensor theories of gravity, but these constraints are traditionally quoted as limits on the microscopic parameters (like the Brans-Dicke coupling, for example) that govern the strength of scalar-matter couplings at the particle level in particular models. Here we present fits to timing data for several pulsars directly in terms of the phenomenological couplings (masses, scalar charges, moment of inertia sensitivities and so on) of the stars involved, rather than to the more microscopic parameters of a specific model. For instance, for the double pulsar PSR J0737-3039A/B we find at the 68% confidence level that the masses are bounded by 1.28 < m_A/m_sun < 1.34 and 1.19 < m_B/m_sun < 1.25, while the scalar-charge to mass ratios satisfy |a_A| < 0.21, |a_B| < 0.21 and |a_B - a_A| < 0.002$. These constraints are independent of the details of the scalar tensor model involved, and of assumptions about the stellar equations of state. Our fits can be used to constrain a broad class of scalar tensor theories by computing the fit quantities as functions of the microscopic parameters in any particular model. For the Brans-Dicke and quasi-Brans-Dicke models, the constraints obtained in this manner are consistent with those quoted in the literature.Comment: 19 pages, 7 figure

    The Parkes Multibeam Pulsar Survey - II. Discovery and Timing of 120 Pulsars

    Get PDF
    The Parkes Multibeam Pulsar Survey is a sensitive survey of a strip of the Galactic plane with |b| \u3c 5° and 260° \u3c l \u3c 50° at 1374 MHz. Here we report the discovery of 120 new pulsars and subsequent timing observations, primarily using the 76-m Lovell radio telescope at Jodrell Bank. The main features of the sample of 370 published pulsars discovered during the multibeam survey are described. Furthermore, we highlight two pulsars: PSR J1734−3333, a young pulsar with the second highest surface magnetic field strength among the known radio pulsars, Bs= 5.4 × 1013 G, and PSR J1830−1135, the second slowest radio pulsar known, with a 6-s period

    Timing the Parkes Multibeam Pulsars

    Get PDF
    Measurement of accurate positions, pulse periods and period derivatives is an essential follow-up to any pulsar survey. The procedures being used to obtain timing parameters for the pulsars discovered in the Parkes multibeam pulsar survey are described. Completed solutions have been obtained so far for about 80 pulsars. They show that the survey is preferentially finding pulsars with higher than average surface dipole magnetic fields. Eight pulsars have been shown to be members of binary systems and some of the more interesting results relating to these are presented.Comment: 6 pages, 2 embedded EPS figures, to be published in proceedings of "Pulsar Astronomy - 2000 and Beyond", ASP Conf. Se

    Characterization of the Crab Pulsar's Timing Noise

    Full text link
    We present a power spectral analysis of the Crab pulsar's timing noise, mainly using radio measurements from Jodrell Bank taken over the period 1982-1989. The power spectral analysis is complicated by nonuniform data sampling and the presence of a steep red power spectrum that can distort power spectra measurement by causing severe power ``leakage''. We develop a simple windowing method for computing red noise power spectra of uniformly sampled data sets and test it on Monte Carlo generated sample realizations of red power-law noise. We generalize time-domain methods of generating power-law red noise with even integer spectral indices to the case of noninteger spectral indices. The Jodrell Bank pulse phase residuals are dense and smooth enough that an interpolation onto a uniform time series is possible. A windowed power spectrum is computed revealing a periodic or nearly periodic component with a period of about 568 days and a 1/f^3 power-law noise component with a noise strength of 1.24 +/- 0.067 10^{-16} cycles^2/sec^2 over the analysis frequency range 0.003 - 0.1 cycles/day. This result deviates from past analyses which characterized the pulse phase timing residuals as either 1/f^4 power-law noise or a quasiperiodic process. The analysis was checked using the Deeter polynomial method of power spectrum estimation that was developed for the case of nonuniform sampling, but has lower spectral resolution. The timing noise is consistent with a torque noise spectrum rising with analysis frequency as f implying blue torque noise, a result not predicted by current models of pulsar timing noise. If the periodic or nearly periodic component is due to a binary companion, we find a companion mass > 3.2 Earth masses.Comment: 53 pages, 9 figures, submitted to MNRAS, abstract condense

    Pulsars in Globular Clusters with the SKA

    Get PDF
    Globular clusters are highly efficient radio pulsar factories. These pulsars can be used as precision probes of the clusters' structure, gas content, magnetic field, and formation history; some of them are also highly interesting in their own right because they probe exotic stellar evolution scenarios as well as the physics of dense matter, accretion, and gravity. Deep searches with SKA1-MID and SKA1-LOW will plausibly double to triple the known population. Such searches will only require one to a few tied-array beams, and can be done during early commissioning of the telescope - before an all-sky pulsar survey using hundreds to thousands of tied-array beams is feasible. With SKA2 it will be possible to observe most of the active radio pulsars within a large fraction of the Galactic globular clusters, an estimated population of 600 - 3700 observable pulsars (those beamed towards us). This rivals the total population of millisecond pulsars that can be found in the Galactic field; fully characterizing it will provide the best-possible physical laboratories as well as a rich dynamical history of the Galactic globular cluster system.Comment: 15 pages, 5 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04
    • …
    corecore