32 research outputs found

    Luminescence evidence for bulk and surface excitons in free xenon clusters

    Full text link
    Cathodoluminescence spectra of free xenon clusters produced by condensation of xenon-argon gas mixtures in supersonic jets expanding into vacuum were studied. By varying initial experimental parameters, including xenon concentration, we could obtain clusters with a xenon core (300-3500 atoms) covered by an argon outer shell as well as shell-free xenon clusters (about 1500 atoms). The cluster size and temperature (about 40 K for both cases) were measured electronographically. Luminescence bands evidencing the existence of bulk and surface excitons were detected for shell-free xenon clusters. The emission from bulk excitons in small clusters is supposed to be due to processes of their multiple elastic reflections from the xenon-vacuum interface. A presence of an argon shell causes extinction of the excitonic bands. In addition, some new bands were found which have no analogs for bulk xenon cryosamples.Comment: The final modified version will be published in Phys. Rev. A 76 (2007

    Photoproduction of Long-Lived Holes and Electronic Processes in Intrinsic Electric Fields Seen through Photoinduced Absorption and Dichroism in Ca_3Ga_{2-x}Mn_xGe_3O_{12} Garnets

    Full text link
    Long-lived photoinduced absorption and dichroism in the Ca_3Ga_{2-x}Mn_xGe_3O_{12} garnets with x < 0.06 were examined versus temperature and pumping intensity. Unusual features of the kinetics of photoinduced phenomena are indicative of the underlying electronic processes. The comparison with the case of Ca_3Mn_2Ge_3O_{12}, explored earlier by the authors, permits one to finally establish the main common mechanisms of photoinduced absorption and dichroism caused by random electric fields of photoproduced charges (hole polarons). The rate of their diffusion and relaxation through recombination is strongly influenced by the same fields, whose large statistical straggling is responsible for a broad continuous set of relaxation components (observed in the relaxation time range from 1 to about 1000 min). For Ca_3Ga_{2-x}Mn_xGe_3O_{12}, the time and temperature dependences of photoinduced absorption and dichroism bear a strong imprint of structure imperfection increasing with x.Comment: 20 pages, 10 figure

    Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates

    Full text link
    Experimental evidence indicates that the superconducting transition in high TcT_c cuprates is an 'undressing' transition. Microscopic mechanisms giving rise to this physics were discussed in the first paper of this series. Here we discuss the calculation of the single particle Green's function and spectral function for Hamiltonians describing undressing transitions in the normal and superconducting states. A single parameter, Υ\Upsilon, describes the strength of the undressing process and drives the transition to superconductivity. In the normal state, the spectral function evolves from predominantly incoherent to partly coherent as the hole concentration increases. In the superconducting state, the 'normal' Green's function acquires a contribution from the anomalous Green's function when Υ \Upsilon is non-zero; the resulting contribution to the spectral function is positivepositive for hole extraction and negativenegative for hole injection. It is proposed that these results explain the observation of sharp quasiparticle states in the superconducting state of cuprates along the (π,0)(\pi,0) direction and their absence along the (π,π)(\pi,\pi) direction.Comment: figures have been condensed in fewer pages for easier readin

    Superconductivity from Undressing

    Full text link
    Photoemission experiments in high TcT_c cuprates indicate that quasiparticles are heavily 'dressed' in the normal state, particularly in the low doping regime. Furthermore these experiments show that a gradual undressing occurs both in the normal state as the system is doped and the carrier concentration increases, as well as at fixed carrier concentration as the temperature is lowered and the system becomes superconducting. A similar picture can be inferred from optical experiments. It is argued that these experiments can be simply understood with the single assumption that the quasiparticle dressing is a function of the local carrier concentration. Microscopic Hamiltonians describing this physics are discussed. The undressing process manifests itself in both the one-particle and two-particle Green's functions, hence leads to observable consequences in photoemission and optical experiments respectively. An essential consequence of this phenomenology is that the microscopic Hamiltonians describing it break electron-hole symmetry: these Hamiltonians predict that superconductivity will only occur for carriers with hole-like character, as proposed in the theory of hole superconductivity

    Physical origin of the buckling in CuO2_2: Electron-phonon coupling and Raman spectra

    Full text link
    It is shown theoretically that the buckling of the CuO2_{2} planes in certain cuprate systems can be explained in terms of an electric field across the planes which originates from different valences of atoms above and below the plane. This field results also in a strong coupling of the Raman-active out-of-phase vibration of the oxygen atoms (B1gB_{1g} mode) to the electronic charge transfer between the two oxygens in the CuO2_{2} plane. Consequently, the electric field can be deduced from the Fano-type line shape of the B1gB_{1g} phonon. Using the electric field estimated from the electron-phonon coupling the amplitude of the buckling is calculated and found to be in good agreement with the structural data. Direct experimental support for the idea proposed is obtained in studies of YBa2_{2}Cu3_{3}O6+x_{6+x} and Bi2_{2}Sr2_{2}(Ca1x_{1-x}Yx_{x})Cu2_{2}O8_{8} with different oxygen and yttrium doping, respectively, including antiferromagnetic samples. In the latter compound, symmetry breaking by replacing Ca partially by Y leads to an enhancement of the electron-phonon coupling by an order of magnitude.Comment: 12 pages, 4 figures, and 1 tabl

    Food Protein-Induced Proctocolitis

    Get PDF
    The article reflects the modern views on food protein induced proctocolitis: prevalence, pathophysiological mechanisms of intestinal damage, clinical manifestations, main food allergens that contribute to the development of this pathological condition, approaches to diagnosis and diet therapy. The article describes a clinical case of food protein induced proctocolitis in a child of the 1st year of life

    Exciton self - trapping into diatomic and triatomic molecular complexes in xenon cryocrystals

    Get PDF
    The recent study of molecular trapped centers in Xe cryocrystals was extended on triatomic self-trapped excitons. Time- and spectrally-resolved molecular luminescence was measured in the temperature range 5–60 K. The processes of intrinsic exciton self-rapping into diatomic and triatomic molecular complexes and extrinsic exciton trapping at lattice imperfections were separated by selective photoexcitation of Xe cryocrystals by synchrotron radiation. The temperature dependencies of triplet lifetimes of molecular exciton subbands were measured for the first time
    corecore