232 research outputs found

    Evidence for a Molecular Cloud Origin for Gamma-Ray Bursts: Implications for the Nature of Star Formation in the Universe

    Get PDF
    It appears that the majority of rapidly-, well-localized gamma-ray bursts with undetected, or dark, optical afterglows, or `dark bursts' for short, occur in clouds of size R > 10L_{49}^{1/2} pc and mass M > 3x10^5L_{49} M_{sun}, where L is the isotropic-equivalent peak luminosity of the optical flash. We show that clouds of this size and mass cannot be modeled as a gas that is bound by pressure equilibrium with a warm or hot phase of the interstellar medium (i.e., a diffuse cloud): Such a cloud would be unstable to gravitational collapse, resulting in the collapse and fragmentation of the cloud until a burst of star formation re-establishes pressure equilibrium within the fragments, and the fragments are bound by self-gravity (i.e., a molecular cloud). Consequently, dark bursts probably occur in molecular clouds, in which case dark bursts are probably a byproduct of this burst of star formation if the molecular cloud formed recently, and/or the result of lingering or latter generation star formation if the molecular cloud formed some time ago. We then show that if bursts occur in Galactic-like molecular clouds, the column densities of which might be universal, the number of dark bursts can be comparable to the number of bursts with detected optical afterglows: This is what is observed, which suggests that the bursts with detected optical afterglows might also occur in molecular clouds. We confirm this by modeling and constraining the distribution of column densities, measured from absorption of the X-ray afterglow, of the bursts with detected optical afterglows: We find that this distribution is consistent with the expectation for bursts that occur in molecular clouds, and is not consistent with the expectation for bursts that occur in diffuse clouds. More...Comment: Accepted to The Astrophysical Journal, 22 pages, 6 figures, LaTe

    The broad band spectral properties of galactic X-ray binary pulsars

    Get PDF
    BeppoSAX observed several galactic binary X-ray pulsars during the Science Verification Phase and in the first year of the regular program. The complex emission spectra of these sources are an ideal target for the BeppoSAX instrumentation, that can measure the emission spectra in an unprecedented broad energy band. Using this capability of BeppoSAX a detailed observational work can be done on the galactic X-ray pulsars. In particular the 0.1-200 keV energy band allows the shape of the continuum emission to be tightly constrained. A better determination of the underlying continuum allows an easier detection of features superimposed onto it, both at low energy (Fe K and L, Ne lines) and at high energies (cyclotron features). We report on the spectral properties of a sample of X-ray pulsars observed with BeppoSAX comparing the obtained results. Some ideas of common properties are also discussed and compared with our present understanding of the emission mechanisms and processes.Comment: 6 pages, 2 figures. Uses espcrc2.sty (included).To appear in Proceedings of "The Active X-ray Sky: Results from BeppoSAX and Rossi-XTE
    • …
    corecore