86,724 research outputs found

    Resolvable Mendelsohn designs and finite Frobenius groups

    Full text link
    We prove the existence and give constructions of a (p(k)−1)(p(k)-1)-fold perfect resolvable (v,k,1)(v, k, 1)-Mendelsohn design for any integers v>k≥2v > k \ge 2 with v≡1mod  kv \equiv 1 \mod k such that there exists a finite Frobenius group whose kernel KK has order vv and whose complement contains an element ϕ\phi of order kk, where p(k)p(k) is the least prime factor of kk. Such a design admits K⋊⟨ϕ⟩K \rtimes \langle \phi \rangle as a group of automorphisms and is perfect when kk is a prime. As an application we prove that for any integer v=p1e1…ptet≥3v = p_{1}^{e_1} \ldots p_{t}^{e_t} \ge 3 in prime factorization, and any prime kk dividing piei−1p_{i}^{e_i} - 1 for 1≤i≤t1 \le i \le t, there exists a resolvable perfect (v,k,1)(v, k, 1)-Mendelsohn design that admits a Frobenius group as a group of automorphisms. We also prove that, if kk is even and divides pi−1p_{i} - 1 for 1≤i≤t1 \le i \le t, then there are at least φ(k)t\varphi(k)^t resolvable (v,k,1)(v, k, 1)-Mendelsohn designs that admit a Frobenius group as a group of automorphisms, where φ\varphi is Euler's totient function.Comment: Final versio

    Phasor analysis of atom diffraction from a rotated material grating

    Full text link
    The strength of an atom-surface interaction is determined by studying atom diffraction from a rotated material grating. A phasor diagram is developed to interpret why diffraction orders are never completely suppressed when a complex transmission function due to the van der Waals interaction is present. We also show that atom-surface interactions can produce asymmetric diffraction patterns. Our conceptual discussion is supported by experimental observations with a sodium atom beam.Comment: 5 pages, 6 figures, submitted to PR

    Localization of Macroscopic Object Induced by the Factorization of Internal Adiabatic Motion

    Full text link
    To account for the phenomenon of quantum decoherence of a macroscopic object, such as the localization and disappearance of interference, we invoke the adiabatic quantum entanglement between its collective states(such as that of the center-of-mass (C.M)) and its inner states based on our recent investigation. Under the adiabatic limit that motion of C.M dose not excite the transition of inner states, it is shown that the wave function of the macroscopic object can be written as an entangled state with correlation between adiabatic inner states and quasi-classical motion configurations of the C.M. Since the adiabatic inner states are factorized with respect to each parts composing the macroscopic object, this adiabatic separation can induce the quantum decoherence. This observation thus provides us with a possible solution to the Schroedinger cat paradoxComment: Revtex4,23 pages,1figur

    Elastic Wave Scattering and Dynamic Stress Concentrations in Stretching Thick Plates with Two Cutouts by Using the Refined Dynamic Theory

    Get PDF
    Based on the refined dynamic equation of stretching plates, the elastic tension–compression wave scattering and dynamic stress concentrations in the thick plate with two cutouts are studied. In view of the problem that the shear stress is automatically satisfied under the free boundary condition, the generalized stress of the first-order vanishing moment of shear stress is considered. The numerical results indicate that, as the cutout is thick, the maximum value of the dynamic stress factor obtained using the refined dynamic theory is 19% higher than that from the solution of plane stress problems of elastic dynamics

    Melt-growth dynamics in CdTe crystals

    Full text link
    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt-growth dynamics and fine-scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt →\rightarrow crystal transformation. Here we demonstrate successful molecular dynamics simulations of melt-growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during the melt-growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical method
    • …
    corecore