3,441 research outputs found
Instability of frozen-in states in synchronous Hebbian neural networks
The full dynamics of a synchronous recurrent neural network model with Ising
binary units and a Hebbian learning rule with a finite self-interaction is
studied in order to determine the stability to synaptic and stochastic noise of
frozen-in states that appear in the absence of both kinds of noise. Both, the
numerical simulation procedure of Eissfeller and Opper and a new alternative
procedure that allows to follow the dynamics over larger time scales have been
used in this work. It is shown that synaptic noise destabilizes the frozen-in
states and yields either retrieval or paramagnetic states for not too large
stochastic noise. The indications are that the same results may follow in the
absence of synaptic noise, for low stochastic noise.Comment: 14 pages and 4 figures; accepted for publication in J. Phys. A: Math.
Ge
Aliquoting structure for centrifugal microfluidics based on a new pneumatic valve
We present a new microvalve that can be monolithically integrated in centrifugally driven lab-on-a-chip systems. In contrast to existing operation principles that use hydrophobic patches, geometrically defined capillary stops or siphons, here we present a pneumatic principle. It needs neither additional local coatings nor expensive micro sized geometries. The valve is controlled by the spinning frequency and can be switched to be open when the centrifugal pressure overcomes the pneumatic pressure inside an unvented reaction cavity. We designed and characterized valves ranging in centrifugal burst pressure from 6700 Pa to 2100 Pa. Based on this valving principle we present a new structure for aliquoting of liquids. We experimentally demonstrated this by splitting 105 muL volumes into 16 aliquots with a volume CV of 3 %
Structure analysis of the virtual Compton scattering amplitude at low energies
We analyze virtual Compton scattering off the nucleon at low energies in a
covariant, model-independent formalism.
We define a set of invariant functions which, once the irregular nucleon pole
terms have been subtracted in a gauge-invariant fashion, is free of poles and
kinematical zeros.
The covariant treatment naturally allows one to implement the constraints due
to Lorentz and gauge invariance, crossing symmetry, and the discrete
symmetries.
In particular, when applied to the reaction,
charge-conjugation symmetry in combination with nucleon crossing generates four
relations among the ten originally proposed generalized polarizabilities of the
nucleon.Comment: 19 pages, LaTeX2e/RevTeX, no figures, original sections IV.-VI.
removed, to be discussed in a separate publication, none of the conclusions
change
The orbital poles of Milky Way satellite galaxies: a rotationally supported disc-of-satellites
Available proper motion measurements of Milky Way (MW) satellite galaxies are
used to calculate their orbital poles and projected uncertainties. These are
compared to a set of recent cold dark-matter (CDM) simulations, tailored
specifically to solve the MW satellite problem. We show that the CDM satellite
orbital poles are fully consistent with being drawn from a random distribution,
while the MW satellite orbital poles indicate that the disc-of-satellites of
the Milky Way is rotationally supported. Furthermore, the bootstrapping
analysis of the spatial distribution of theoretical CDM satellites also shows
that they are consistent with being randomly drawn. The theoretical CDM
satellite population thus shows a significantly different orbital and spatial
distribution than the MW satellites, most probably indicating that the majority
of the latter are of tidal origin rather than being DM dominated
sub-structures. A statistic is presented that can be used to test a possible
correlation of satellite galaxy orbits with their spatial distribution.Comment: Accepted for publication in Ap
Nucleon generalized polarizabilities within a relativistic Constituent Quark Model
Nucleon generalized polarizabilities are investigated within a relativistic
framework, defining such quantities through a Lorentz covariant multipole
expansion of the amplitude for virtual Compton scattering. The key physical
ingredients in the calculation of the nucleon polarizabilities are the Lorentz
invariant reduced matrix elements of the electromagnetic transition current,
which can be evaluated from off-energy-shell helicity amplitudes. The evolution
of the proton paramagnetic polarizability, , as a function of
the virtual-photon three-momentum transfer is explicitly evaluated within
a relativistic constituent quark model by adopting transition form factors
obtained in the light-front formalism. The discussion is focussed on the role
played by the effects due to the relativistic approach and to the transition
form factors, derived within different models.Comment: 14 pages and three figures (included), to appear in Phys. Rev. C (May
1998
Spectra of sparse non-Hermitian random matrices: an analytical solution
We present the exact analytical expression for the spectrum of a sparse
non-Hermitian random matrix ensemble, generalizing two classical results in
random-matrix theory: this analytical expression forms a non-Hermitian version
of the Kesten-Mckay law as well as a sparse realization of Girko's elliptic
law. Our exact result opens new perspectives in the study of several physical
problems modelled on sparse random graphs. In this context, we show
analytically that the convergence rate of a transport process on a very sparse
graph depends upon the degree of symmetry of the edges in a non-monotonous way.Comment: 5 pages, 5 figures, 12 pages supplemental materia
Cervical artery dissection: An atypical presentation with Ehlers-Danlos-like collagen pathology?
The authors took skin biopsies of the macroscopically normal skin of seven consecutive patients with spontaneous cervical artery dissection (SCAD). Histologically, alterations of the collagen and elastic fiber networks were found in six patients. In five, the histologic, immunohistochemical, and ultrastructural changes were similar to those usually found in Ehlers-Danlos syndrome (EDS). This suggests that SCAD is frequently associated with the dermal alterations seen in EDS
Generalized polarizabilities and the spin-averaged amplitude in virtual Compton scattering off the nucleon
We discuss the low-energy behavior of the spin-averaged amplitude of virtual
Compton scattering (VCS) off a nucleon.
Based on gauge invariance, Lorentz invariance and the discrete symmetries, it
is shown that to first order in the frequency of the final real photon only two
generalized polarizabilities appear.
Different low-energy expansion schemes are discussed and put into
perspective.Comment: 13 pages, 1 postscript figure, Revtex using eps
- …