709 research outputs found
Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates.
The incidence of human Campylobacter jejuni and C. coli infections has increased markedly in many parts of the world in the last decade as has the number of quinolone-resistant and, to a lesser extent, macrolide-resistant Campylobacter strains causing infections. We review macrolide and quinolone resistance in Campylobacter and track resistance trends in human clinical isolates in relation to use of these agents in food animals. Susceptibility data suggest that erythromycin and other macrolides should remain the drugs of choice in most regions, with systematic surveillance and control measures maintained, but fluoroquinolones may now be of limited use in the empiric treatment of Campylobacter infections in many regions
Self-organized nanostructuring in Zr0.69Al0.31N thin films studied by atom probe tomography
We have applied atom probe tomography (APT) to analyze self-organizing structures of wear-resistant Zr0.69Al0.31N thin films grown by magnetron sputtering. Transmission electron microscopy shows that these films grow as a three-dimensional nanocomposite, consisting of interleaved lamellae in a labyrinthine structure, with an in-plane size scale of ~ 5 nm. The structure was recovered in the Al APT signal, while the Zr and N data lacked structural information. The onset of the self-organized labyrinthine growth was observed to occur by surface nucleation, 5â8 nm above the MgO substrate, due to increasing ZrâAl compositional fluctuations during elemental segregation. At a final stage, the labyrinthine growth mode was observed to be interrupted by the formation of larger ZrN grains
Relaxation in glassforming liquids and amorphous solids
The field of viscousliquid and glassysolid dynamics is reviewed by a process of posing the key questions that need to be answered, and then providing the best answers available to the authors and their advisors at this time. The subject is divided into four parts, three of them dealing with behavior in different domains of temperature with respect to the glass transition temperature, Tg,and a fourth dealing with âshort time processes.â The first part tackles the high temperature regime T\u3eTg, in which the system is ergodic and the evolution of the viscousliquid toward the condition at Tg is in focus. The second part deals with the regime TâŒTg, where the system is nonergodic except for very long annealing times, hence has time-dependent properties (aging and annealing). The third part discusses behavior when the system is completely frozen with respect to the primary relaxation process but in which secondary processes, particularly those responsible for âsuperionicâ conductivity, and dopart mobility in amorphous silicon, remain active. In the fourth part we focus on the behavior of the system at the crossover between the low frequency vibrational components of the molecular motion and its high frequency relaxational components, paying particular attention to very recent developments in the short time dielectric response and the high Qmechanical response
On the origine of the Boson peak
We show that the phonon-saddle transition in the ensemble of generalized
inherent structures (minima and saddles) happens at the same point as the
dynamical phase transition in glasses, that has been studied in the framework
of the mode coupling approximation. The Boson peak observed in glasses at low
temperature is a remanent of this transition.Comment: Proceeding of the Pisa conference September 2002, 13 pages+ 4
figures, To be publiched by Journal of Physic
Pseudopotential study of binding properties of solids within generalized gradient approximations: The role of core-valence exchange-correlation
In ab initio pseudopotential calculations within density-functional theory
the nonlinear exchange-correlation interaction between valence and core
electrons is often treated linearly through the pseudopotential. We discuss the
accuracy and limitations of this approximation regarding a comparison of the
local density approximation (LDA) and generalized gradient approximations
(GGA), which we find to describe core-valence exchange-correlation markedly
different. (1) Evaluating the binding properties of a number of typical solids
we demonstrate that the pseudopotential approach and namely the linearization
of core-valence exchange-correlation are both accurate and limited in the same
way in GGA as in LDA. (2) Examining the practice to carry out GGA calculations
using pseudopotentials derived within LDA we show that the ensuing results
differ significantly from those obtained using pseudopotentials derived within
GGA. As principal source of these differences we identify the distinct behavior
of core-valence exchange-correlation in LDA and GGA which, accordingly,
contributes substantially to the GGA induced changes of calculated binding
properties.Comment: 13 pages, 6 figures, submitted to Phys. Rev. B, other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
- âŠ