555 research outputs found

    Mantle heterogeneity during the formation of the North Atlantic Igneous Province: Constraints from trace element and Sr-Nd-Os-O isotope systematics of Baffin Island picrites

    Get PDF
    Sr-Nd-Os-O isotope and major and trace element data from ~62 Ma picrites from Baffin Island constrain the composition of mantle sources sampled at the inception of North Atlantic Igneous Province (NAIP) magmatism. We recognize two compositional types. Depleted (N-type) lavas have low 87Sr/86Sri (0.702990–0.703060) and 187Os/188Osi (0.1220–0.1247) and high 143Nd/144Ndi (0.512989–0.512999) and are depleted in incompatible elements relative to primitive mantle. Enriched (E-type) lavas have higher 87Sr/86Sri (0.703306–0.703851) and 187Os/188Osi (0.1261–0.1303), lower 143Nd/144Ndi (0.512825–0.512906), and incompatible element concentrations similar to, or more enriched than, primitive mantle. There is also a subtle difference in oxygen isotope composition; E-type lavas are marginally lower in δ18Oolivine value (5.16–4.84‰) than N-type lavas (5.15–5.22‰). Chemical and isotopic variations between E- and N-type lavas are inconsistent with assimilation of crust and/or subcontinental lithospheric mantle and appear to instead reflect mixing between melts derived from two distinct mantle sources. Strontium-Nd-O isotope compositions and incompatible trace element abundances of N-type lavas suggest these are largely derived from the depleted upper mantle. The 187Os/188Osi ratios of N-type lavas can also be explained by such a model but require that the depleted upper mantle had γOs of approximately −5 to −7 at 62 Ma. This range overlaps the lowest γOs values measured in abyssal peridotites. Baffin Island lava compositions are also permissive of a model involving recharging of depleted upper mantle with 3He-rich material from the lower mantle (Stuart et al., Nature, 424, 57–59, 2003), with the proviso that recharge had no recognizable effect on the lithophile trace element and Sr-Nd-Os-O isotope composition. The origin of the enriched mantle component sampled by Baffin Island lavas is less clear but may be metasomatized and high-temperature-altered recycled oceanic lithosphere transported within the proto Iceland plume. Differences between Baffin Island lavas and modern Icelandic basalts suggest that a range of enriched and depleted mantle sources have been tapped since the inception of magmatism in the province. Similarities between Baffin Island lavas erupted and those of similar age from East and West Greenland also suggest that the enriched component in Baffin Island lavas may have been sampled by lavas erupted over a wide geographic range

    Neutron-rich Chromium Isotope Anomalies in Supernova Nanoparticles

    Get PDF
    Neutron-rich isotopes with masses near that of iron are produced in Type Ia and II supernovae (SNeIa and SNeII). Traces of such nucleosynthesis are found in primitive meteorites in the form of variations in the isotopic abundance of ^(54)Cr, the most neutron-rich stable isotope of chromium. The hosts of these isotopic anomalies must be presolar grains that condensed in the outflows of SNe, offering the opportunity to study the nucleosynthesis of iron-peak nuclei in ways that complement spectroscopic observations and can inform models of stellar evolution. However, despite almost two decades of extensive search, the carrier of ^(54)Cr anomalies is still unknown, presumably because it is fine grained and is chemically labile. Here, we identify in the primitive meteorite Orgueil the carrier of ^(54)Cr anomalies as nanoparticles (3.6 × solar). Such large enrichments in ^(54)Cr can only be produced in SNe. The mineralogy of the grains supports condensation in the O/Ne-O/C zones of an SNII, although a Type Ia origin cannot be excluded. We suggest that planetary materials incorporated different amounts of these nanoparticles, possibly due to late injection by a nearby SN that also delivered ^(26)Al and ^(60)Fe to the solar system. This idea explains why the relative abundance of ^(54)Cr and other neutron-rich isotopes vary between planets and meteorites. We anticipate that future isotopic studies of the grains identified here will shed new light on the birth of the solar system and the conditions in SNe

    Secondary ion mass spectrometry of vapor−liquid−solid grown, Au-catalyzed, Si wires

    Get PDF
    Knowledge of the catalyst concentration within vapor-liquid-solid (VLS) grown semiconductor wires is needed in order to assess potential limits to electrical and optical device performance imposed by the VLS growth mechanism. We report herein the use of secondary ion mass spectrometry to characterize the Au catalyst concentration within individual, VLS-grown, Si wires. For Si wires grown by chemical vapor deposition from SiCl_4 at 1000 °C, an upper limit on the bulk Au concentration was observed to be 1.7 x 10^16 atoms/cm^3, similar to the thermodynamic equilibrium concentration at the growth temperature. However, a higher concentration of Au was observed on the sidewalls of the wires

    In situ dating and investigation of remarkably depleted –27.3‰ SMOW “Slushball” Earth zircons

    Get PDF
    Paleoproterozoic amphibolites and gneisses - that are remarkably depleted in ^(18)O are found in the Belomorian Belt in Karelia, Russia [1,2]. We mapped their extent to exceed 200x20km and affect metamorphosed mafic intrusions (est. ~2.4 Ga intrusion age) and host 2.6Ga gneisses found in this 1.9 Ga collisional belt. δ^(18)O values of –7 to –27.3‰ characterize minerals and rocks from several of these localities; some of these rocks are also remarkably depleted with respect to δD (-212 to –235‰ amphiboles). All have typical terrestrial Δ^(17)O values of 0‰. Based on previous paleogeographic reconstructions, we attribute the origin of these exotic O and H isotope compositions to the hydrothermal alteration associated with subglacial rifting during the Paleoproterozoic panglobal ice ages, but discuss additional possibilities: extremely low-δ^(18)O Paleo- proterozoic sea water, and excursion of Karelia to polar latitudes. Given that at high-T hydrothermal exchange equilibrium Δ^(18)O(rockwater) is close to zero, but water-rock interaction is rarely 100% efficient, the lowest measured δ^(18)O value in silicates likely gives the upper δ^(18)O bound for the altering meteoric fluid; we thus continues our quest to find the lowest δ^(18)O material such as a mineral assemblage or a tiny zircon fragment that would provide record of δ^(18)Owater

    Assessing cementation in the El Capitan Reef Complex and Lincolnshire Limestone using ^(13)C-^(18)O bond abundances in carbonates

    Get PDF
    The Permian El Capitan and Jurassic Lincolnshire limestones have been intensely studied for their stratigraphy, depositional setting and paleoecology. Nevertheless, the diagenetic development of these two units remains controversial, particularly with regard to diagenetic carbonate formation. Calcite cement phases have previously been characterized via δ^(18)O and δ^(13)C in order to determine precipitation temperatures and carbon sources, however, these results have lead to conflicting hypotheses

    A dynamic Archean sulfur cycle

    Get PDF
    Many aspects of the Earth’s early sulfur cycle, from the origin of mass anomalous fractionations to the scale and degree of biological involvement, remain poorly understood. We have been studying the nature of multiple sulfur isotope (^(32)S, ^(33)S, and ^(34)S) signals using a novel combination of scanning high-resolution low-temperature superconductivity SQUID microscopy and secondary ion mass spectrometry (SIMS) techniques in a suite of samples from distal slope and basinal environments adjacent to a major Late Archean-age (~2.6-2.52 Ga) carbonate platform. Coupled with petrography, these techniques allow us to interrogate, at the same microscopic scale, the complex history of mineralization in samples containing diverse sulfide-bearing mineral components. Because of a general lack of Archean sulfate minerals, we focused our analyses on early diagenetic pyrite nodules, precipitated in surface sediments. This allows us to assay fractionations by controlling for isotope mass balance

    A medium throughput rodent model of relapse from addiction with behavioral and pharmacological specificity

    Get PDF
    One of most formidable problems in the treatment of addiction is the high rate of relapse. The discovery of medicines to help mitigate relapse are aided by animal models that currently involve weeks of training and require surgical preparations and drug delivery devices. The present set of experiments was initiated to investigate a rapid 8-day screening method that utilizes food instead of intravenous drug administration. Male Sprague-Dawley rats were trained in a reinstatement paradigm in which every lever press produced a 45 mg food pellet concurrently paired with a light and tone. Behavior was subsequently extinguished with lever responses producing neither food nor food-associated stimuli. Reinstatement of responding was evaluated under conditions in which the first three responses of every 5 min time bin produced a food pellet along with food-associated stimuli. The mGlu5 receptor antagonists MPEP and MTEP produced a significant reduction in reinstatement while failing to alter responding where every response produced food. The cannabinoid CB1 receptor antagonist rimonabant and the mGlu2/3 receptor agonist LY379268 also selectively reduced reinstatement. Other compounds including clozapine, d-amphetamine, chlordiazepoxide, ABT-431, naltrexone and citalopram were without effect. The results suggest that relapse-like behavioral effects can be extended to non-pharmacological reinforcers. Drug effects demonstrated both behavioral and pharmacological specificity. The present experimental design thus allows for efficient and rapid assessment of the effects of drugs that might be useful in the treatment of addiction-associated relapse

    Intracrystalline site preference of oxygen isotopes in goethite: A single-mineral paleothermometer

    Get PDF
    The crystal structure of goethite, FeO(OH), has two distinct oxygen sites, one with exclusively Fe-O bonds, the other with bonds to both iron and hydrogen. We developed a method to assess the oxygen isotope contrast between these sites by measuring both the bulk goethite and the oxygen released in the conversion of goethite to hematite. The method involves collecting the water released by dehydroxylation, fluorinating that population of extracted atoms, and measuring the resulting oxygen isotope composition (extracted δO¹⁸). Then, on a separate aliquot, all structural oxygen is fluorinated and measured (bulk δO¹⁸). Using synthetic goethite precipitates grown under controlled environmental conditions, we found significant temperature-dependent fractionation, ε_(bulk-extracted)=(5.51±0.26)×(10⁶/T²)−(44.5±2.8); T in Kelvin). This intracrystalline fractionation forms the basis of a single-phase paleothermometer with an estimated uncertainty of ∼2-3°C. The temperature dependence appears to be independent of the isotopic composition of the parent fluid from which the goethite formed and the pH of that fluid. This intracrystalline thermometer can be used to simultaneously determine the formation temperature of a goethite and the isotopic composition of the water from which it formed. Natural goethites analyzed with this technique yield geologically reasonable formation temperatures of between 15 and 41°C

    Pb isotopic variability in melt inclusions from the EMI–EMII–HIMU mantle end-members and the role of the oceanic lithosphere

    Get PDF
    Melt inclusions from four individual lava samples representing the HIMU (Mangaia Island), EMI (Pitcairn Island) and EMII (Tahaa Island) end member components, have heterogeneous Pb isotopic composition larger than that defined by the erupted lavas in each island. The broad linear trend in ^(207)Pb/^(206)Pb–^(208)Pb/^(206)Pb space produced by the melt inclusions from Mangaia, Tahaa and fPitcairn samples reproduces the entire trend defined by the Austral chain, the Society islands and the Pitcairn island and seamount groups. The inclusions preserve a record of melt composition of far greater isotopic diversity than that sampled in whole rock basalts. These results can be explained by mixing of a common depleted component with the HIMU, EMI and EMII lavas, respectively. We favor a model that considers the oceanic lithosphere to be that common component. We suggest that the Pb isotopic compositions of the melt inclusions reflect wall rock reaction of HIMU, EMI and EMII melts during their percolation through the oceanic lithosphere. Under these conditions, the localized rapid crystallization of olivine from primitive basalt near the reaction zone would allow the entrapment of melt inclusions with different isotopic composition
    corecore