2 research outputs found

    Treating vulvovaginal atrophy/genitourinary syndrome of menopause: how important is vaginal lubricant and moisturizer composition?

    No full text
    <p>Vaginal dryness is a common condition that is particularly prevalent during and after the menopause, and is one of the symptoms of vulvovaginal atrophy/genitourinary syndrome of menopause. The impact of vaginal dryness on interpersonal relationships, quality of life, daily activities, and sexual function can be significant, but is frequently underestimated. Furthermore, barriers exist to treatment-seeking, and this condition is often underreported and undertreated. Greater education about vaginal dryness and the range of available treatments is essential to encourage more women to seek help for this condition.</p> <p>Personal lubricants and moisturizers are effective at relieving discomfort and pain during sexual intercourse for women with mild to moderate vaginal dryness, particularly those who have a genuine contraindication to estrogen, or who choose not to use estrogen. However, there is a distinction between lubricants and moisturizers, and notable differences between commercially available products. Women should be advised to choose a product that is optimally balanced in terms of both osmolality and pH, and is physiologically most similar to natural vaginal secretions. A series of recommendations for the use of vaginal lubricants and moisturizers, either on their own or in combination with systemic or topical hormone replacement therapy, is presented.</p

    Hyperspectral logging of middle Cambrian marine sediments with hydrocarbon prospectivity: a case study from the southern Georgina Basin, northern Australia

    No full text
    <p>The Georgina Basin is a Neoproterozoic–Paleozoic basin that spans parts of the Northern Territory and Queensland in northern Australia. The basin is prospective for petroleum, phosphate and base metals (copper, lead and zinc). The Dulcie and Toko synclines in the southern part of the basin are prospective for petroleum, where a thick Cambro-Ordovician succession of marine carbonates hosts several source rocks and associated oil and gas shows. The key source rock units occur within the middle Cambrian Narpa Group, including both the Thorntonia Limestone (Series 2 and 3) and the Arthur Creek Formation (Series 3). The base of the Arthur Creek Formation is characterised by organic-rich ‘hot’ shales (associated with a prominent gamma spike in well logs) that have been targeted by petroleum explorers for both conventional and unconventional oil and gas. For this study, hyperspectral logging data collected by HyLogger™ instruments were evaluated from 13 wells in the southern Georgina Basin, including petroleum, mineral and stratigraphic wells. Formation boundaries are commonly (but not always) characterised by distinctive changes in mineralogy, as determined by spectral and X-ray diffraction data. Key source rock units in the southern Georgina Basin were characterised and mapped in terms of their mineralogy, and other spectral properties (e.g. Short-Wave Infrared (SWIR) reflectance and spectral contrast). Interpretation of the hyperspectral data alongside wireline log data supports the differentiation of two successions within the Arthur Creek Formation that are each characterised by basal organic-rich shales, previously distinguished on the basis of biostratigraphic and well-log data. The older succession in the Dulcie Syncline is spectrally characterised as being quartz and carbonate dominated. The younger succession, distributed across the eastern part of the Dulcie Syncline and fully across the Toko Syncline, is spectrally characterised as quartz and carbonate dominated, with variable white-mica contributions. Key associations are observed between the HyLogger mineralogy and geophysical-log data. Peaks in the gamma log intensity in the middle Cambrian sediments commonly correspond to elevated measured total organic carbon contents, decreased carbonate contribution, SWIR reflectance and spectral contrast, and relatively increased proportions of white micas and quartz. This study demonstrates that HyLogging data can provide an improved understanding of the sedimentological, mineralogical and diagenetic characteristics, as well as associated spatial heterogeneity, of prospective hydrocarbon formations in sedimentary basins.</p
    corecore