47 research outputs found

    Reconnections of quantized vortex rings in superfluid 4^4He at very low temperatures

    Get PDF
    Collisions in a beam of unidirectional quantized vortex rings of nearly identical radii RR in superfluid 4^4He in the limit of zero temperature (0.05 K) were studied using time-of-flight spectroscopy. Reconnections between two primary rings result in secondary vortex loops of both smaller and larger radii. Discrete steps in the distribution of flight times, due to the limits on the earliest possible arrival times of secondary loops created after either one or two consecutive reconnections, are observed. The density of primary rings was found to be capped at the value 500cm2R1500{\rm \,cm}^{-2} R^{-1} independent of the injected density. This is due to collisions between rings causing piling-up of many other vortex rings. Both observations are in quantitative agreement with our theory.Comment: 7 pages, 4 figures, includes supplementary materia

    No Effect of Steady Rotation on Solid 4^4He in a Torsional Oscillator

    Full text link
    We have measured the response of a torsional oscillator containing polycrystalline hcp solid 4^{4}He to applied steady rotation in an attempt to verify the observations of several other groups that were initially interpreted as evidence for macroscopic quantum effects. The geometry of the cell was that of a simple annulus, with a fill line of relatively narrow diameter in the centre of the torsion rod. Varying the angular velocity of rotation up to 2\,rad\,s1^{-1} showed that there were no step-like features in the resonant frequency or dissipation of the oscillator and no history dependence, even though we achieved the sensitivity required to detect the various effects seen in earlier experiments on other rotating cryostats. All small changes during rotation were consistent with those occurring with an empty cell. We thus observed no effects on the samples of solid 4^4He attributable to steady rotation.Comment: 8 pages, 3 figures, accepted in J. Low Temp. Phy

    Dissipation of Quasiclassical Turbulence in Superfluid 4^4He

    Get PDF
    We compare the decay of turbulence in superfluid 4^4He produced by a moving grid to the decay of turbulence created by either impulsive spin-down to rest or by intense ion injection. In all cases the vortex line density LL decays at late time tt as Lt3/2L \propto t^{-3/2}. At temperatures above 0.8 K, all methods result in the same rate of decay. Below 0.8 K, the spin-down turbulence maintains initial rotation and decays slower than grid turbulence and ion-jet turbulence. This may be due to a decoupling of the large-scale superfluid flow from the normal component at low temperatures, which changes its effective boundary condition from no-slip to slip.Comment: Main article: 5 pages, 3 figures. Supplemental material: 4 pages, 3 figures. Accepted for publication in Physical Review Letter

    Longitudinal NMR and Spin States in the A-like Phase of 3He in Aerogel

    Full text link
    It was found that two different spin states of the A-like phase can be obtained in aerogel sample. In one of these states we have observed the signal of the longitudinal NMR, while in another state no trace of such a signal was found. The states also have different properties in transverse NMR experiments. Longitudinal NMR signal was also observed in the B-like phase of 3He in aerogel.Comment: 8 pages, 7 figure

    Simultaneous Measurements of the Torsional Oscillator Anomaly and Thermal Conductivity in Solid 4He

    Full text link
    In these torsional oscillator experiments the samples of solid 4^4He were characterized by measuring their thermal conducitvity. Polycrystalline samples of helium of either high isotopic purity or natural concentration of 3^3He were grown in an annular container by the blocked-capillary method and investigated before and after annealing. No correlation has been found between the magnitude of the low-temperature shift of the torsional oscillator frequency and the amount of crystalline defects as measured by the thermal conductivity. In samples with the natural 3^3He concentration a substantial excess thermal conductivity over the usual T3T^3 dependence was observed below 120 mK.Comment: 4 pages, 3 figure

    Soliton-like Spin State in the A-like Phase of 3He in Anisotropic Aerogel

    Full text link
    We have found a new stable spin state in the A-like phase of superfluid 3He confined to intrinsically anisotropic aerogel. The state can be formed by radiofrequency excitation applied while cooling through the superfluid transition temperature and its NMR properties are different from the standard A-like phase obtained in the limit of very small excitation. It is possible that this new state is formed by textural domain walls pinned by aerogel.Comment: 9 pages, 3 figures. Submitted to J. of Low Tem. Phys. (QFS2007 Proceedings

    A low-frequency, high-amplitude, torsional oscillator for turbulence studies in quantum fluids

    Get PDF
    We describe a new type of torsional oscillator, suitable for studies of quantum fluids at frequencies of ∼ 100 Hz, but capable of reaching high velocities of up to several cm\,s−1. This requires the oscillator amplitude to exceed 100 μm, which is much too large for a conventional capacitor-driven device. We describe the new geometry for the oscillator, discuss its design, and report our initial tests of its performance

    Observation of Crossover from Ballistic to Diffusion Regime for Excimer Molecules in Superfluid 4^4He

    Get PDF
    We have measured the temperature dependence of the time of flight of helium excimer molecules He2* in superfluid 4He and find that the molecules behave ballistically below 100mK and exhibit Brownian motion above 200 mK. In the intermediate temperature range the transport cannot be described by either of the models.Comment: 8 pages, 6 figures, submitted to the Proceedings of the International Conference on Quantum Fluids and Solids 201
    corecore