6,836 research outputs found

    Empirical modeling of the quiet time nightside magnetosphere

    Get PDF
    Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko (1989) but is modified by the addition of an inner eastward ring current at a radial distance of ∼3 RE as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko (1987) such that the former dominates the magnetic field in the inner magnetosphere, whereas the latter prevails in the distant tail. The distribution of plasma pressure, which is required to balance the magnetic force for each of these two field models, is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This effort is the first attempt to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of ∼3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between ∼2 and ∼35 RE

    Charge exchange contribution to the decay of the ring current, measured by energetic neutral atoms (ENAs)

    Get PDF
    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases

    Revisiting two-step Forbush decreases

    Get PDF
    Interplanetary coronal mass ejections (ICMEs) and their shocks can sweep out galactic cosmic rays (GCRs), thus creating Forbush decreases (FDs). The traditional model of FDs predicts that an ICME and its shock decrease the GCR intensity in a two-step profile. This model, however, has been the focus of little testing. Thus, our goal is to discover whether a passing ICME and its shock inevitably lead to a two-step FD, as predicted by the model. We use cosmic ray data from 14 neutron monitors and, when possible, high time resolution GCR data from the spacecraft International Gamma Ray Astrophysical Laboratory (INTEGRAL). We analyze 233 ICMEs that should have created two-step FDs. Of these, only 80 created FDs, and only 13 created two-step FDs. FDs are thus less common than predicted by the model. The majority of events indicates that profiles of FDs are more complicated, particularly within the ICME sheath, than predicted by the model. We conclude that the traditional model of FDs as having one or two steps should be discarded. We also conclude that generally ignored small-scale interplanetary magnetic field structure can contribute to the observed variety of FD profiles

    On a connection between the switching separability of a graph and that of its subgraphs

    Full text link
    A graph of order n>3n>3 is called {switching separable} if its modulo-2 sum with some complete bipartite graph on the same set of vertices is divided into two mutually independent subgraphs, each having at least two vertices. We prove the following: if removing any one or two vertices of a graph always results in a switching separable subgraph, then the graph itself is switching separable. On the other hand, for every odd order greater than 4, there is a graph that is not switching separable, but removing any vertex always results in a switching separable subgraph. We show a connection with similar facts on the separability of Boolean functions and reducibility of nn-ary quasigroups. Keywords: two-graph, reducibility, separability, graph switching, Seidel switching, graph connectivity, nn-ary quasigroupComment: english: 9 pages; russian: 9 page

    Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts

    Get PDF
    [1] Time variations in plasma beta and a parameter which measures isotropy in suprathermal electron pitch angle distributions show a remarkably close correspondence throughout the solar wind. The finding implies that high-beta plasma, with its multiple magnetic holes and sharp field and plasma gradients, is conducive to electron pitch-angle scattering, which reduces heat flux from the Sun without field-line disconnection. Thus the finding impacts our understanding of signatures we use to determine magnetic topology in the heliosphere

    The discovery of trapped energetic electrons in the outer cusp

    Get PDF
    We report on the POLAR/CEPPAD discovery of a trapped, 60°\u3cθ\u3c120° pitch angle electron population in the outer cusp (7−9+ Re), whose energetic electron component extends from below 30 keV to ∼2 MeV. Because the time variability in the outer cusp precludes mapping with POLAR, we have carried out test particle simulations using the Tsyganenko 1996 model (T96) to demonstrate the trapping of these energy electrons in the outer cusp region and the resonant frequencies of its trapped motion. We discuss the boundaries and regions of the cusp trap and show that it is analogous to the dipole trap. We show that the phase space densities observed there are equal or greater than the phase space densities observed in the radiation belts at constant magnetic moment, thus allowing the possibility of diffusive filling of the radiation belts from the cus

    Heliospheric plasma sheets

    Get PDF
    [1] As a high-beta feature on scales of hours or less, the heliospheric plasma sheet (HPS) encasing the heliospheric current sheet shows a high degree of variability. A study of 52 sector boundaries identified in electron pitch angle spectrograms in Wind data from 1995 reveals that only half concur with both high-beta plasma and current sheets, as required for an HPS. The remaining half lack either a plasma sheet or current sheet or both. A complementary study of 37 high-beta events reveals that only 5 contain sector boundaries while nearly all (34) contain local magnetic field reversals, however brief. We conclude that high-beta plasma sheets surround current sheets but that most of these current sheets are associated with fields turned back on themselves. The findings are consistent with the hypothesis that high-beta plasma sheets, both at and away from sector boundaries, are the heliospheric counterparts of the small coronal transients observed at the tips of helmet streamers, in which case the proposed mechanism for their release, interchange reconnection, could be responsible for the field inversions
    • …
    corecore