2,209 research outputs found
ATM Quality of Service Tests for Digitized Video Using ATM Over Satellite: Laboratory Tests
A digitized video application was used to help determine minimum quality of service parameters for asynchronous transfer mode (ATM) over satellite. For these tests, binomially distributed and other errors were digitally inserted in an intermediate frequency link via a satellite modem and a commercial gaussian noise generator. In this paper, the relation- ship between the ATM cell error and cell loss parameter specifications is discussed with regard to this application. In addition, the video-encoding algorithms, test configurations, and results are presented in detail
Recommended from our members
Reentry thermal testing of a general purpose heat source fueled clad
A General Purpose Heat Source (GPHS) module was exposed to heat treatments simulating an isothermal prelaunch condition, followed by thermal pulses corresponding to atmospheric reentry. Helium release rates were determined during each heating and modeled after simple diffusion theory. Following the tests, the module was examined metallurgically with no evidence of swelling of the cladding nor degradation of the fuel
Mass production of volume phase holographic gratings for the VIRUS spectrograph array
The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline
array of 150 copies of a simple, fiber-fed integral field spectrograph that
will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first
optical astronomical instrument to be replicated on an industrial scale, and
represents a relatively inexpensive solution for carrying out large-area
spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each
spectrograph contains a volume phase holographic (VPH) grating with a 138 mm
diameter clear aperture as its dispersing element. The instrument utilizes the
grating in first-order for 350-550 nm. Including witness samples, a suite of
170 VPH gratings has been mass produced for VIRUS. Here, we present the design
of the VIRUS VPH gratings and a discussion of their mass production. We
additionally present the design and functionality of a custom apparatus that
has been used to rapidly test the first-order diffraction efficiency of the
gratings for various discrete wavelengths within the VIRUS spectral range. This
device has been used to perform both in-situ tests to monitor the effects of
adjustments to the production prescription as well as to carry out the final
acceptance tests of the gratings' diffraction efficiency. Finally, we present
the as-built performance results for the entire suite of VPH gratings.Comment: 16 pages, 11 figures, 2 tables. To be published in Proc. SPIE, 2014,
"Advances in Optical and Mechanical Technologies for Telescopes and
Instrumentation", 9151-53. The work presented in this article follows from
arXiv:1207:448
The Approach to Ergodicity in Monte Carlo Simulations
The approach to the ergodic limit in Monte Carlo simulations is studied using
both analytic and numerical methods. With the help of a stochastic model, a
metric is defined that enables the examination of a simulation in both the
ergodic and non-ergodic regimes. In the non-ergodic regime, the model implies
how the simulation is expected to approach ergodic behavior analytically, and
the analytically inferred decay law of the metric allows the monitoring of the
onset of ergodic behavior. The metric is related to previously defined measures
developed for molecular dynamics simulations, and the metric enables the
comparison of the relative efficiencies of different Monte Carlo schemes.
Applications to Lennard-Jones 13-particle clusters are shown to match the model
for Metropolis, J-walking and parallel tempering based approaches. The relative
efficiencies of these three Monte Carlo approaches are compared, and the decay
law is shown to be useful in determining needed high temperature parameters in
parallel tempering and J-walking studies of atomic clusters.Comment: 17 Pages, 7 Figure
Population genomic, olfactory, dietary, and gut microbiota analyses demonstrate the unique evolutionary trajectory of feral pigs
Domestication is an intriguing evolutionary process. Many domestic populations are subjected to strong human-mediated selection, and when some individuals return to the wild, they are again subjected to selective forces associated with new environments. Generally, these feral populations evolve into something different from their wild predecessors and their members typically possess a combination of both wild and human selected traits. Feralisation can manifest in different forms on a spectrum from a wild to a domestic phenotype. This depends on how the rewilded domesticated populations can readapt to natural environments based on how much potential and flexibility the ancestral genome retains after its domestication signature. Whether feralisation leads to the evolution of new traits that do not exist in the wild or to convergence with wild forms, however, remains unclear. To address this question, we performed population genomic, olfactory, dietary, and gut microbiota analyses on different populations of Sus scrofa (wild boar, hybrid, feral and several domestic pig breeds). Porcine single nucleotide polymorphisms (SNPs) analysis shows that the feral population represents a cluster distinctly separate from all others. Its members display signatures of past artificial selection, as demonstrated by values of FST in specific regions of the genome and bottleneck signature, such as the number and length of runs of homozygosity. Generalised FST values, reacquired olfactory abilities, diet, and gut microbiota variation show current responses to natural selection. Our results suggest that feral pigs are an independent evolutionary unit which can persist so long as levels of human intervention remain unchanged
Inherent-Structure Dynamics and Diffusion in Liquids
The self-diffusion constant D is expressed in terms of transitions among the
local minima of the potential (inherent structure, IS) and their correlations.
The formulae are evaluated and tested against simulation in the supercooled,
unit-density Lennard-Jones liquid. The approximation of uncorrelated
IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature
range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST
are associated with a hopping mechanism, the condition D ~ D_{0} provides a new
way to identify the crossover to hopping. The results suggest that theories of
diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR
Relevance of baseline hard proton-proton spectra for high-energy nucleus-nucleus physics
We discuss three different cases of hard inclusive spectra in proton-proton
collisions: high single hadron production at 20 GeV and
at = 62.4 GeV, and direct photon production at = 200 GeV;
with regard to their relevance for the search of Quark Gluon Plasma signals in
A+A collisions at SPS and RHIC energies.Comment: Proceeds. Hot Quarks 2004 Int. Workshop on the Physics of
Ultrarelativistic Nucleus-Nucleus Collisions. 26 pages. 26 figs. [minor
corrs., refs. added
Operando analysis of a solid oxide fuel cell by environmental transmission electron microscopy
Correlating the microstructure of an energy conversion device to its
performance is often a complex exercise, notably in solid oxide fuel cell
(SOFC) research. SOFCs combine multiple materials and interfaces that evolve in
time due to high operating temperatures and reactive atmospheres. We
demonstrate here that operando environmental transmission electron microscopy
can simplify the identification of structure-property links in such systems. By
contacting a cathode-electrolyte-anode cell to a heating and biasing
microelectromechanical system in a single-chamber configuration, a direct
correlation is found between the environmental conditions (O2 and H2 partial
pressures, temperature), the cell voltage, and the microstructural evolution of
the fuel cell, down to the atomic scale. The results shed new insights into the
impact of the anode oxidation state and its morphology on the cell electrical
properties.Comment: 18 pages, 5 figure
The Potential Energy Landscape and Mechanisms of Diffusion in Liquids
The mechanism of diffusion in supercooled liquids is investigated from the
potential energy landscape point of view, with emphasis on the crossover from
high- to low-T dynamics. Molecular dynamics simulations with a time dependent
mapping to the associated local mininum or inherent structure (IS) are
performed on unit-density Lennard-Jones (LJ). New dynamical quantities
introduced include r2_{is}(t), the mean-square displacement (MSD) within a
basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t)
the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t)
posesses an interval of linear t-dependence allowing calculation of an
intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin
dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds
the time, tau_{pl}, needed for the system to explore the basin, indicating the
action of barriers. The distinction between motion among the IS below T_{c} and
saddle, or border dynamics above T_{c} is discussed.Comment: submitted to pr
- …