16,215 research outputs found

    Nano-Engineering Defect Structures on Graphene

    Full text link
    We present a new way of nano-engineering graphene using defect domains. These regions have ring structures that depart from the usual honeycomb lattice, though each carbon atom still has three nearest neighbors. A set of stable domain structures is identified using density functional theory (DFT), including blisters, ridges, ribbons, and metacrystals. All such structures are made solely out of carbon; the smallest encompasses just 16 atoms. Blisters, ridges and metacrystals rise up out of the sheet, while ribbons remain flat. In the vicinity of vacancies, the reaction barriers to formation are sufficiently low that such defects could be synthesized through the thermally activated restructuring of coalesced adatoms.Comment: 4 pages, 5 figure

    Accuracy Assessment of the 2006 National Land Cover Database Percent Impervious Dataset

    Get PDF
    An impervious surface is any surface that prevents water from infiltrating the ground. As impervious surface area increases within watersheds, stream networks and water quality are negatively impacted. The Multi-Resolution Land Characteristic Consortium developed a percent impervious dataset using Landsat imagery as part of the 2006 National Land Cover Database. This percent impervious dataset estimates imperviousness for each 30-meter cell in the land cover database. The percent impervious dataset permits study of impervious surfaces, can be used to identify impacted or critical areas, and allows for development of impact mitigation plans; however, the accuracy of this dataset is unknown. To determine the accuracy of the 2006 percent impervious dataset, reference data were digitized from one-foot digital aerial imagery for three study areas in Arkansas, USA. Digitized reference data were compared to percent impervious dataset estimates of imperviousness at multiple 900m2 , 8,100m2 , and 22,500m2 sample grids to determine if accuracy varied by ground area. Analyses showed percent impervious estimates and digitized reference data differ modestly; however, as ground area increases, percent impervious estimates and reference data match more closely. These findings suggest that the percent impervious dataset is useful for planning purposes for ground areas of at least 2.25ha

    Study of process variables associated with manufacturing hermetically sealed nickel-cadmium cells

    Get PDF
    Formation time, specific gravity of solution, and overcharge amount associated with electrochemical cleaning or formation operation in manufacturing nickel cadmium cell

    Option pricing in affine generalized Merton models

    Get PDF
    In this article we consider affine generalizations of the Merton jump diffusion model [Merton, J. Fin. Econ., 1976] and the respective pricing of European options. On the one hand, the Brownian motion part in the Merton model may be generalized to a log-Heston model, and on the other hand, the jump part may be generalized to an affine process with possibly state dependent jumps. While the characteristic function of the log-Heston component is known in closed form, the characteristic function of the second component may be unknown explicitly. For the latter component we propose an approximation procedure based on the method introduced in [Belomestny et al., J. Func. Anal., 2009]. We conclude with some numerical examples

    Study of process variables associated with manufacturing hermetically sealed nickel-cadium cells Quarterly report, 23 May - 23 Aug. 1970

    Get PDF
    Separator materials, ceramic to metal seals, cell plate polarization and impregnation processes, and plaque sintering data for study of variables in manufacture of nickel cadmium cell

    Bose-Einstein condensates in standing waves: The cubic nonlinear Schroedinger equation with a periodic potential

    Full text link
    We present a new family of stationary solutions to the cubic nonlinear Schroedinger equation with a Jacobian elliptic function potential. In the limit of a sinusoidal potential our solutions model a dilute gas Bose-Einstein condensate trapped in a standing light wave. Provided the ratio of the height of the variations of the condensate to its DC offset is small enough, both trivial phase and nontrivial phase solutions are shown to be stable. Numerical simulations suggest such stationary states are experimentally observable.Comment: 4 pages, 4 figure

    Effective Josephson dynamics in resonantly driven Bose-Einstein condensates

    Get PDF
    We show that the orbital Josephson effect appears in a wide range of driven atomic Bose-Einstein condensed systems, including quantum ratchets, double wells and box potentials. We use three separate numerical methods: Gross-Pitaevskii equation, exact diagonalization of the few-mode problem, and the Multi-Configurational Time-Dependent Hartree for Bosons algorithm. We establish the limits of mean-field and few-mode descriptions, demonstrating that they represent the full many-body dynamics to high accuracy in the weak driving limit. Among other quantum measures, we compute the instantaneous particle current and the occupation of natural orbitals. We explore four separate dynamical regimes, the Rabi limit, chaos, the critical point, and self-trapping; a favorable comparison is found even in the regimes of dynamical instabilities or macroscopic quantum self-trapping. Finally, we present an extension of the (t,t')-formalism to general time-periodic equations of motion, which permits a systematic description of the long-time dynamics of resonantly driven many-body systems, including those relevant to the orbital Josephson effect.Comment: 14 pages, 9 figure

    Macroscopic quantum tunnelling of Bose-Einstein condensates in a finite potential well

    Full text link
    Bose-Einstein condensates are studied in a potential of finite depth which supports both bound and quasi-bound states. This potential, which is harmonic for small radii and decays as a Gaussian for large radii, models experimentally relevant optical traps. The nonlinearity, which is proportional to both the number of atoms and the interaction strength, can transform bound states into quasi-bound ones. The latter have a finite lifetime due to tunnelling through the barriers at the borders of the well. We predict the lifetime and stability properties for repulsive and attractive condensates in one, two, and three dimensions, for both the ground state and excited soliton and vortex states. We show, via a combination of the variational and WKB approximations, that macroscopic quantum tunnelling in such systems can be observed on time scales of 10 milliseconds to 10 seconds.Comment: J. Phys. B: At. Mol. Opt. Phys. in pres

    Generating ring currents, solitons, and svortices by stirring a Bose-Einstein condensate in a toroidal trap

    Full text link
    We propose a simple stirring experiment to generate quantized ring currents and solitary excitations in Bose-Einstein condensates in a toroidal trap geometry. Simulations of the 3D Gross-Pitaevskii equation show that pure ring current states can be generated efficiently by adiabatic manipulation of the condensate, which can be realized on experimental time scales. This is illustrated by simulated generation of a ring current with winding number two. While solitons can be generated in quasi-1D tori, we show the even more robust generation of hybrid, solitonic vortices (svortices) in a regime of wider confinement. Svortices are vortices confined to essentially one-dimensional dynamics, which obey a similar phase-offset--velocity relationship as solitons. Marking the transition between solitons and vortices, svortices are a distinct class of symmetry-breaking stationary and uniformly rotating excited solutions of the 2D and 3D Gross-Pitaevskii equation in a toroidal trapping potential. Svortices should be observable in dilute-gas experiments.Comment: 8 pages, 4 figures; accepted for publication in J. Phys. B (Letters

    A pilot study examining garment severance damage caused by a trained sharp-weapon user

    Get PDF
    The pilot study summarized in this paper aimed to raise awareness of a gap that exists in the forensic textile science literature about damage caused to clothing by trained sharp-weapon users. A male trained in the Filipino martial arts discipline of Eskrima performed attack techniques on a physical model of a male torso covered with a 97% cotton/3% elastane knitted T-shirt, that is, a garment commonly worn by males. Fabric severance appearance created by three different, but commonly available, knives was evaluated. High-speed video was used to capture each attack. After each attack the resulting damage to the garment was assessed. This pilot study highlighted differences in severances associated with weapon selection, that is, not all knives resulted in similar patterns of textile damage. In addition, a mixture of stab and slash severances were observed. The findings demonstrated the possible misinterpretation of textile damage under these circumstances compared to damage patterns reported in the existing forensic textile science literature for more commonly occurring knife attacks (i.e. stabbings)
    • …
    corecore