35 research outputs found

    High Temperature Matter and Gamma Ray Spectra from Microscopic Black Holes

    Full text link
    The relativistic viscous fluid equations describing the outflow of high temperature matter created via Hawking radiation from microscopic black holes are solved numerically for a realistic equation of state. We focus on black holes with initial temperatures greater than 100 GeV and lifetimes less than 6 days. The spectra of direct photons and photons from π0\pi^0 decay are calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray spectrum from black holes distributed in our galactic halo. However, the most promising route for their observation is to search for point sources emitting gamma rays of ever-increasing energy.Comment: 33 pages, 13 figures, to be submitted to PR

    Calculation of the emergent spectrum and observation of primordial black holes

    Get PDF
    We calculate the emergent spectrum of microscopic black holes, which emit copious amounts of thermal ``Hawking'' radiation, taking into account the proposition that (contrary to previous models) emitted quarks and gluons do not directly fragment into hadrons, but rather interact and form a photosphere and decrease in energy before fragmenting. The resulting spectrum emits copious amount of photons at energies around 100MeV. We find that the limit on the average universal density of black holes is not significantly affected by the photosphere. However we also find that gamma ray satellites such as EGRET and GLAST are well suited to look for nearby black holes out to a distance on the order of 0.3 parsecs, and conclude that if black holes are clustered locally as much as luminous matter, they may be directly detectable.Comment: 10 pages, Latex, submitted to PR

    Baryogenesis from Primordial Blackholes after Electroweak Phase Transition

    Get PDF
    Incorporating a realistic model for accretion of ultra-relativistic particles by primordial blackholes (PBHs), we study the evolution of an Einstein-de Sitter universe consisting of PBHs embedded in a thermal bath from the epoch 1033\sim 10^{-33} sec to 5×109\sim 5\times 10^{-9} sec. In this paper we use Barrow et al's ansatz to model blackhole evaporation in which the modified Hawking temperature goes to zero in the limit of the blackhole attaining a relic state with mass mpl\sim m_{pl}. Both single mass PBH case as well as the case in which blackhole masses are distributed in the range 8×1023×1058\times 10^2 - 3\times 10^5 gm have been considered in our analysis. Blackholes with mass larger than 105\sim 10^5 gm appear to survive beyond the electroweak phase transition and, therefore, successfully manage to create baryon excess via XXˉX-\bar X emissions, averting the baryon number wash-out due to sphalerons. In this scenario, we find that the contribution to the baryon-to-entropy ratio by PBHs of initial mass mm is given by ϵζ(m/1gm)1\sim \epsilon \zeta (m/1 {gm})^{-1}, where ϵ\epsilon and ζ\zeta are the CP-violating parameter and the initial mass fraction of the PBHs, respectively. For ϵ\epsilon larger than 104\sim 10^{-4}, the observed matter-antimatter asymmetry in the universe can be attributed to the evaporation of PBHs.Comment: Latex2e file with seven figures included as postscript file

    NEUTRINOS FROM PRIMORDIAL BLACK HOLES

    Full text link
    The emission of particles from black holes created in the early Universe has detectable astrophysical consequences. The most stringent bound on their abundance has been obtained from the absence of a detectable diffuse flux of 100 MeV photons. Further scrutiny of these bounds is of interest as they, for instance, rule out primordial black holes as a dark matter candidate. We here point out that these bounds can, in principle, be improved by studying the diffuse cosmic neutrino flux. Measurements of near-vertical atmospheric neutrino fluxes in a region of low geomagnetic latitude can provide a competitive bound. The most favorable energy to detect a possible diffuse flux of primordial black hole origin is found to be a few MeV. We also show that measurements of the diffuse ντ\nu _\tau flux is the most promising to improve the existing bounds deduced from gamma-ray measurements. Neutrinos from individual black hole explosions can be detected in the GeV-TeV energy region. We find that the kilometer-scale detectors, recently proposed, are able to establish competitive bounds.Comment: 19 pages plus 9 uuencoded and compressed postscript figure

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review

    Solar Neutrinos and the Eclipse Effect

    Full text link
    The solar neutrino counting rate in a real time detector like Super--Kamiokanda, SNO, or Borexino is enhanced due to neutrino oscillations in the Moon during a partial or total solar eclipse. The enhancement is calculated as a function of the neutrino parameters in the case of three flavor mixing. This enhancement, if seen, can further help to determine the neutrino parameters.Comment: 24 Pages Revtex, 8 figures as one ps file. To appear in Phys. Rev. D; Some typos corrected and a reference adde

    Searching for Very-High-Energy Gamma-Ray Bursts from Evaporating Primordial Black Holes

    Full text link
    Temporal and energy characteristics of the very-high-energy gamma-ray bursts from evaporating primordial black holes have been calculated by assuming that the photospheric and chromospheric effects are negligible. The technique of searching for such bursts on shower arrays is described. We show that the burst time profile and the array dead time should be taken into account to interpret experimental data. Based on data from the Andyrchy array of the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences), we have obtained an upper limit on the number density of evaporating primordial black holes in a local region of space with a scale size of ~10^{-3} pc. Comparison with the results of previous experiments is made.Comment: 6 pages, 6 figure

    Region of Excessive Flux of PeV Cosmic Rays in the Direction Toward Pulsars PSR J1840+5640 and LAT PSR J1836+5925

    Full text link
    An analysis of arrival directions of extensive air showers (EAS) registered with the EAS MSU and EAS-1000 prototype arrays has revealed a region of excessive flux of PeV cosmic rays in the direction toward pulsars PSR J1840+5640 and LAT PSR J1836+5925 at significance level up to 4.5sigma. The first of the pulsars was discovered almost 30 years ago and is a well-studied old radio pulsar located at the distance of 1.7pc from the Solar system. The second pulsar belongs to a new type of pulsars, discovered by the space gamma-ray observatory Fermi, pulsations of which are not observed in optical and radio wavelengths but only in the gamma-ray range of energies (gamma-ray-only pulsars). In our opinion, the existence of the region of excessive flux of cosmic rays registered with two different arrays provides a strong evidence that isolated pulsars can give a noticeable contribution to the flux of Galactic cosmic rays in the PeV energy range.Comment: 14 pages; v.2: a few remarks to match a version accepted for Astronomy Letters added. They can be found by redefining the \NEW command in the preamble of the LaTeX fil

    Evidence for TeV gamma ray emission from Cassiopeia A

    Get PDF
    232 hours of data were accumulated from 1997 to 1999, using the HEGRA Stereoscopic Cherenkov Telescope System to observe the supernova remnant Cassiopeia A. TeV gamma ray emission was detected at the 5 sigma level, and a flux of (5.8 +- 1.2(stat) +- 1.2(syst)) 10^(-9) ph m^(-2) s^(-1) above 1 TeV was derived. The spectral distribution is consistent with a power law with a differential spectral index of -2.5 +- 0.4(stat) +- 0.1(syst) between 1 and 10 TeV. As this is the first report of the detection of a TeV gamma ray source on the "centi-Crab" scale, we present the analysis in some detail. Implications for the acceleration of cosmic rays depend on the details of the source modeling. We discuss some important aspects in this paper.Comment: 9 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Observation of the Shadowing of Cosmic Rays by the Moon using a Deep Underground Detector

    Get PDF
    Using data collected by the MACRO experiment during the years 1989-1996, we show evidence for the shadow of the moon in the underground cosmic ray flux with a significance of 3.6 sigma. This detection of the shadowing effect is the first by an underground detector. A maximum-likelihood analysis is used to determine that the angular resolution of the apparatus is 0.9+/-0.3 degrees. These results demonstrate MACRO's capabilities as a muon telescope by confirming its absolute pointing ability and quantifying its angular resolution.Comment: 14 pages, 8 figures Submitted to Phys. Rev.
    corecore