37 research outputs found
Analysis of unbounded operators and random motion
We study infinite weighted graphs with view to \textquotedblleft limits at
infinity,\textquotedblright or boundaries at infinity. Examples of such
weighted graphs arise in infinite (in practice, that means \textquotedblleft
very\textquotedblright large) networks of resistors, or in statistical
mechanics models for classical or quantum systems. But more generally our
analysis includes reproducing kernel Hilbert spaces and associated operators on
them. If is some infinite set of vertices or nodes, in applications the
essential ingredient going into the definition is a reproducing kernel Hilbert
space; it measures the differences of functions on evaluated on pairs of
points in . And the Hilbert norm-squared in will represent
a suitable measure of energy. Associated unbounded operators will define a
notion or dissipation, it can be a graph Laplacian, or a more abstract
unbounded Hermitian operator defined from the reproducing kernel Hilbert space
under study. We prove that there are two closed subspaces in reproducing kernel
Hilbert space which measure quantitative notions of limits at
infinity in , one generalizes finite-energy harmonic functions in
, and the other a deficiency index of a natural operator in
associated directly with the diffusion. We establish these
results in the abstract, and we offer examples and applications. Our results
are related to, but different from, potential theoretic notions of
\textquotedblleft boundaries\textquotedblright in more standard random walk
models. Comparisons are made.Comment: 38 pages, 4 tables, 3 figure
Wavelets and graph -algebras
Here we give an overview on the connection between wavelet theory and
representation theory for graph -algebras, including the higher-rank
graph -algebras of A. Kumjian and D. Pask. Many authors have studied
different aspects of this connection over the last 20 years, and we begin this
paper with a survey of the known results. We then discuss several new ways to
generalize these results and obtain wavelets associated to representations of
higher-rank graphs. In \cite{FGKP}, we introduced the "cubical wavelets"
associated to a higher-rank graph. Here, we generalize this construction to
build wavelets of arbitrary shapes. We also present a different but related
construction of wavelets associated to a higher-rank graph, which we anticipate
will have applications to traffic analysis on networks. Finally, we generalize
the spectral graph wavelets of \cite{hammond} to higher-rank graphs, giving a
third family of wavelets associated to higher-rank graphs
Restrictions and extensions of semibounded operators
We study restriction and extension theory for semibounded Hermitian operators
in the Hardy space of analytic functions on the disk D. Starting with the
operator zd/dz, we show that, for every choice of a closed subset F in T=bd(D)
of measure zero, there is a densely defined Hermitian restriction of zd/dz
corresponding to boundary functions vanishing on F. For every such restriction
operator, we classify all its selfadjoint extension, and for each we present a
complete spectral picture.
We prove that different sets F with the same cardinality can lead to quite
different boundary-value problems, inequivalent selfadjoint extension
operators, and quite different spectral configurations. As a tool in our
analysis, we prove that the von Neumann deficiency spaces, for a fixed set F,
have a natural presentation as reproducing kernel Hilbert spaces, with a
Hurwitz zeta-function, restricted to FxF, as reproducing kernel.Comment: 63 pages, 11 figure
On R-duals and the duality principle in Gabor analysis
The concept of R-duals of a frame was introduced by Casazza, Kutyniok and
Lammers in 2004, with the motivation to obtain a general version of the duality
principle in Gabor analysis. For tight Gabor frames and Gabor Riesz bases the
three authors were actually able to show that the duality principle is a
special case of general results for R-duals. In this paper we introduce various
alternative R-duals, with focus on what we call R-duals of type II and III. We
show how they are related and provide characterizations of the R-duals of type
II and III. In particular, we prove that for tight frames these classes
coincide with the R-duals by Casazza et el., which is desirable in the sense
that the motivating case of tight Gabor frames already is well covered by these
R-duals. On the other hand, all the introduced types of R-duals generalize the
duality principle for larger classes of Gabor frames than just the tight frames
and the Riesz bases; in particular, the R-duals of type III cover the duality
principle for all Gabor frames
Essential selfadjointness of the graph-Laplacian
We study the operator theory associated with such infinite graphs as
occur in electrical networks, in fractals, in statistical mechanics, and even
in internet search engines. Our emphasis is on the determination of spectral
data for a natural Laplace operator associated with the graph in question. This
operator will depend not only on , but also on a prescribed
positive real valued function defined on the edges in . In electrical
network models, this function will determine a conductance number for each
edge. We show that the corresponding Laplace operator is automatically
essential selfadjoint. By this we mean that is defined on the dense
subspace (of all the real valued functions on the set of vertices
with finite support) in the Hilbert space . The
conclusion is that the closure of the operator is selfadjoint in
, and so in particular that it has a unique spectral resolution,
determined by a projection valued measure on the Borel subsets of the infinite
half-line. We prove that generically our graph Laplace operator
will have continuous spectrum. For a given infinite graph
with conductance function , we set up a system of finite graphs with
periodic boundary conditions such the finite spectra, for an ascending family
of finite graphs, will have the Laplace operator for as its limit.Comment: 50 pages with TOC and figure
Number Theoretic Considerations Related To The Scaling Of Spectra Of Cantor-Type Measures
We investigate some relations between number theory and spectral measures related to the harmonic analysis of a Cantor set. Specifically, we explore ways to determine when an odd natural number m generates a complete or incomplete Fourier basis for a Cantor-type measure with scale g