3,722 research outputs found

    Gamma-Set Domination Graphs. I: Complete Biorientations of \u3cem\u3eq-\u3c/em\u3eExtended Stars and Wounded Spider Graphs

    Get PDF
    The domination number of a graph G, γ(G), and the domination graph of a digraph D, dom(D) are integrated in this paper. The γ-set domination graph of the complete biorientation of a graph G, domγ(G) is created. All γ-sets of specific trees T are found, and dom-γ(T) is characterized for those classes

    Digraphs with Isomorphic Underlying and Domination Graphs: Pairs of Paths

    Get PDF
    A domination graph of a digraph D, dom (D), is created using thc vertex set of D and edge uv ϵ E (dom (D)) whenever (u, z) ϵ A (D) or (v, z) ϵ A (D) for any other vertex z ϵ A (D). Here, we consider directed graphs whose underlying graphs are isomorphic to their domination graphs. Specifically, digraphs are completely characterized where UGc (D) is the union of two disjoint paths

    Characterization of digraphs with equal domination graphs and underlying graphs

    Get PDF
    A domination graph of a digraph D, dom(D), is created using the vertex set of D and edge {u,v}∈E[dom(D)] whenever (u,z)∈A(D) or (v,z)∈A(D) for every other vertex z∈V(D). The underlying graph of a digraph D, UG(D), is the graph for which D is a biorientation. We completely characterize digraphs whose underlying graphs are identical to their domination graphs, UG(D)=dom(D). The maximum and minimum number of single arcs in these digraphs, and their characteristics, is given

    Reducibility of Gene Patterns in Ciliates using the Breakpoint Graph

    Full text link
    Gene assembly in ciliates is one of the most involved DNA processings going on in any organism. This process transforms one nucleus (the micronucleus) into another functionally different nucleus (the macronucleus). We continue the development of the theoretical models of gene assembly, and in particular we demonstrate the use of the concept of the breakpoint graph, known from another branch of DNA transformation research. More specifically: (1) we characterize the intermediate gene patterns that can occur during the transformation of a given micronuclear gene pattern to its macronuclear form; (2) we determine the number of applications of the loop recombination operation (the most basic of the three molecular operations that accomplish gene assembly) needed in this transformation; (3) we generalize previous results (and give elegant alternatives for some proofs) concerning characterizations of the micronuclear gene patterns that can be assembled using a specific subset of the three molecular operations.Comment: 30 pages, 13 figure
    • …
    corecore