23,099 research outputs found

    Nuclear Dynamics with the Sky3D code

    Full text link
    A description is presented of how to use the Sky3D time-dependent Hartree-Fock code to calculate giant monopole resonances. This requires modification to the code, and a step-by-step guide of how to make the necessary modification is given. An example of how to analyse the output of the code to obtain quantities of physics interest is included. Together, the modifications and the post-processing are intended to serve as a typical example of how the code, which was designed to be extendable to particular users' needs, can be extended.Comment: submitted to Proceedings of the International Workshop on Nuclear Theory 33 (Rila, Bulgaria

    Planetary magnetic fields

    Get PDF
    As a consequence of the smallness of the electronic fine structure constant, the characteristic time scale for the free diffusive decay of a magnetic field in a planetary core is much less than the age of the Solar System, but the characteristic time scale for thermal diffusion is greater than the age of the Solar System. Consequently, primordial fields and permanent magnetism are small and the only means of providing a substantial planetary magnetic field is the dynamo process. This requires a large region which is fluid, electrically conducting and maintained in a non-uniform motion that includes a substantial RMS vertical component. The attributes of fluidity and conductivity are readily provided in the deep interiors of all planets and most satellites, either in the form of an Fe alloy with a low eutectic temperature (e.g. Fe-S-O in terrestrial bodies and satellites) or by the occupation of conduction states in fluid hydrogen or 'ice' (H2O-NH3-CH4) in giant planets. It is argued that planetary dynamos are almost certainly maintained by convection (compositional and/or thermal)

    Higgs fields, bundle gerbes and string structures

    Full text link
    We use bundle gerbes and their connections and curvings to obtain an explicit formula for a de Rham representative of the string class of a loop group bundle. This is related to earlier work on calorons.Comment: 15 page

    On the Stable Relative Orientation of Groups Connected by a Carbon-Carbon Single Bond

    Get PDF
    Langseth and his co-workers [1] have recently applied the results of essentially incomplete spectroscopic studies of liquid cyclohexane, symmetrical tetrachloroethane, and ethylene deuterobromide to a discussion of the intramolecular forces restricting internal rotation about the C-C bond. We believe that none of their structural conclusions is correct. Their discussion is based on their conclusion that in these molecules the opposed or eclipse configurations are the stable ones. Insofar as liquid cyclohexane and symmetrical tetrachloroethane are concerned this conclusion is most probably incorrect since it directly contradicts the results of a great number of more straightforward studies of these and similar molecules

    Turbulence characteristics of an axisymmetric reacting flow

    Get PDF
    Turbulent sudden expansion flows are of significant theoretical and practical importance. Such flows have been the subject of extensive analytical and experimental study for decades, but many issues are still unresolved. Detailed information on reacting sudden expansion flows is very limited, since suitable measurement techniques have only been available in recent years. The present study of reacting flow in an axisymmetric sudden expansion was initiated under NASA support in December 1983. It is an extension of a reacting flow program which has been carried out with Air Force support under Contract F33615-81-K-2003. Since the present effort has just begun, results are not yet available. Therefore a brief overview of results from the Air Force program will be presented to indicate the basis for the work to be carried out

    Continuum time-dependent Hartree-Fock for giant resonances in spherical nuclei

    Get PDF
    This paper deals with the solution of the spherically symmetric time-dependent Hartree-Fock approximation applied in the case of nuclear giant monopole resonances. The problem is spatially unbounded as the resonance state is in the continuum. The practical requirement to perform the calculation in a finite-sized spatial region results in a difficulty with the spatial boundary conditions. Here we propose a absorbing boundary condition scheme to handle the conflict. The derivation, via a Laplace transform method, and implementation is described. The accuracy and efficiency of the scheme is tested and the results presented to support the case that they are a effective way of handling the artificial boundary.Comment: 13 pages, 8 figure
    • …
    corecore