96 research outputs found

    A roadmap for the design of four-terminal spin valves and the extraction of spin diffusion length

    Full text link
    Graphene is a promising substrate for future spintronics devices owing to its remarkable electronic mobility and low spin-orbit coupling. Hanle precession in spin valve devices is commonly used to evaluate the spin diffusion and spin lifetime properties. In this work, we demonstrate that this method is no longer accurate when the distance between inner and outer electrodes is smaller than six times the spin diffusion length, leading to errors as large as 50% for the calculations of the spin figures of merit of graphene. We suggest simple but efficient approaches to circumvent this limitation by addressing a revised version of the Hanle fit function. Complementarily, we provide clear guidelines for the design of four-terminal spin valves able to yield flawless estimations of the spin lifetime and the spin diffusion coefficient.Comment: 7 pages, 5 figure

    Histological study of sheep skin transformation during the recreation of historical parchment manufacture

    Get PDF
    AbstractWe report a simple histological study on skin biopsies from young domestic sheep following each step in transformation from skin to parchment production. During the recreation of historical parchment manufacture, histological analyses were conducted; before and after lime treatment, hair removal, and stretching. Sections were fixed and stained using a variety of histological stains to identify the presence of different molecular classes and the fibrous proteins, collagen and elastin. The results reveal surprisingly few histological changes in most steps in the production process. However, very visible changes in the supramolecular ordering of skin macromolecules (elastin, collagen) occur during the final stage of parchment production when stretched on the frame. Collagen fibres and hair follicles were all strongly re-oriented in the direction of strain. Surprisingly despite the thinness of the lambskin and the exhaustive treatment in lime, not all fats were saponified and even in the final product Oil Red O stained fat bodies were detectable on the hair side of the skin. We believe this study will help compensate for the lack of sources on microscopic changes in parchment during the recreation of its historical manufacture.</jats:p

    Biomarkers of response to ibrutinib plus nivolumab in relapsed diffuse large B-cell lymphoma, follicular lymphoma, or Richter's transformation

    Get PDF
    We analyzed potential biomarkers of response to ibrutinib plus nivolumab in biopsies from patients with diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and Richter's transformation (RT) from the LYM1002 phase I/IIa study, using programmed death ligand 1 (PD-L1) immunohistochemistry, whole exome sequencing (WES), and gene expression profiling (GEP). In DLBCL, PD-L1 elevation was more frequent in responders versus nonresponders (5/8 [62.5%] vs. 3/16 [18.8%]; p = 0.065; complete response 37.5% vs. 0%; p = 0.028). Overall response rates for patients with WES and GEP data, respectively, were: DLBCL (38.5% and 29.6%); FL (46.2% and 43.5%); RT (76.5% and 81.3%). In DLBCL, WES analyses demonstrated that mutations in RNF213 (40.0% vs. 6.2%; p = 0.055), KLHL14 (30.0% vs. 0%; p = 0.046), and LRP1B (30.0% vs. 6.2%; p = 0.264) were more frequent in responders. No responders had mutations in EBF1, ADAMTS20, AKAP9, TP53, MYD88, or TNFRSF14, while the frequency of these mutations in nonresponders ranged from 12.5% to 18.8%. In FL and RT, genes with different mutation frequencies in responders versus nonresponders were: BCL2 (75.0% vs. 28.6%; p = 0.047) and ROS1 (0% vs. 50.0%; p = 0.044), respectively. Per GEP, the most upregulated genes in responders were LEF1 and BTLA (overall), and CRTAM (germinal center B-cell-like DLBCL). Enriched pathways were related to immune activation in responders and resistance-associated proliferation/replication in nonresponders. This preliminary work may help to generate hypotheses regarding genetically defined subsets of DLBCL, FL, and RT patients most likely to benefit from ibrutinib plus nivoluma

    Editor's Choice - Infective Native Aortic Aneurysms: A Delphi Consensus Document on Terminology, Definition, Classification, Diagnosis, and Reporting Standards.

    Get PDF
    There is no consensus regarding the terminology, definition, classification, diagnostic criteria, and algorithm, or reporting standards for the disease of infective native aortic aneurysm (INAA), previously known as mycotic aneurysm. The aim of this study was to establish this by performing a consensus study. The Delphi methodology was used. Thirty-seven international experts were invited via mail to participate. Four two week Delphi rounds were performed, using an online questionnaire, initially with 22 statements and nine reporting items. The panellists rated the statements on a five point Likert scale. Comments on statements were analysed, statements revised, and results presented in iterative rounds. Consensus was defined as ≥ 75% of the panel selecting "strongly agree" or "agree" on the Likert scale, and consensus on the final assessment was defined as Cronbach's alpha coefficient &gt; .80. All 38 panellists completed all four rounds, resulting in 100% participation and agreement that this study was necessary, and the term INAA was agreed to be optimal. Three more statements were added based on the results and comments of the panel, resulting in a final 25 statements and nine reporting items. All 25 statements reached an agreement of ≥ 87%, and all nine reporting items reached an agreement of 100%. The Cronbach's alpha increased for each consecutive round (round 1 = .84, round 2 = .87, round 3 = .90, and round 4 = .92). Thus, consensus was reached for all statements and reporting items. This Delphi study established the first consensus document on INAA regarding terminology, definition, classification, diagnostic criteria, and algorithm, as well as reporting standards. The results of this study create essential conditions for scientific research on this disease. The presented consensus will need future amendments in accordance with newly acquired knowledge

    Anchor Side Chains of Short Peptide Fragments Trigger Ligand-Exchange of Class II MHC Molecules

    Get PDF
    Class II MHC molecules display peptides on the cell surface for the surveillance by CD4+ T cells. To ensure that these ligands accurately reflect the content of the intracellular MHC loading compartment, a complex processing pathway has evolved that delivers only stable peptide/MHC complexes to the surface. As additional safeguard, MHC molecules quickly acquire a ‘non-receptive’ state once they have lost their ligand. Here we show now that amino acid side chains of short peptides can bypass these safety mechanisms by triggering the reversible ligand-exchange. The catalytic activity of dipeptides such as Tyr-Arg was stereo-specific and could be enhanced by modifications addressing the conserved H-bond network near the P1 pocket of the MHC molecule. It affected both antigen-loading and ligand-release and strictly correlated with reported anchor preferences of P1, the specific target site for the catalytic side chain of the dipeptide. The effect was evident also in CD4+ T cell assays, where the allele-selective influence of the dipeptides translated into increased sensitivities of the antigen-specific immune response. Molecular dynamic calculations support the hypothesis that occupation of P1 prevents the ‘closure’ of the empty peptide binding site into the non-receptive state. During antigen-processing and -presentation P1 may therefore function as important “sensor” for peptide-load. While it regulates maturation and trafficking of the complex, on the cell surface, short protein fragments present in blood or lymph could utilize this mechanism to alter the ligand composition on antigen presenting cells in a catalytic way

    Characterization of Structural Features Controlling the Receptiveness of Empty Class II MHC Molecules

    Get PDF
    MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new antigens onto the empty MHC II. However, the mechanisms driving the formation of the peptide inaccessible state are not well understood. Here, a combined approach of experimental site-directed mutagenesis and computational modeling is used to reveal structural features underlying “non-receptiveness.” Molecular dynamics simulations of the human MHC II HLA-DR1 suggest a straightening of the α-helix of the β1 domain during the transition from the open to the non-receptive state. The movement is mostly confined to a hinge region conserved in all known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues αQ9 and βN82. Mutagenesis experiments confirmed that replacement of either one of the two residues by alanine renders the protein highly susceptible. Notably, loading enhancement was also observed when the mutated MHC II molecules were expressed on the surface of fibroblast cells. Altogether, structural features underlying the non-receptive state of empty HLA-DR1 identified by theoretical means and experiments revealed highly conserved residues critically involved in the receptiveness of MHC II. The atomic details of rearrangements of the peptide-binding groove upon peptide loss provide insight into structure and dynamics of empty MHC II molecules and may foster rational approaches to interfere with non-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting from the structural knowledge provided by this study

    Acetonic Extract of Buxus sempervirens Induces Cell Cycle Arrest, Apoptosis and Autophagy in Breast Cancer Cells

    Get PDF
    Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer

    Femtosecond pulsed-laser deposition of BaTiO 3

    No full text
    corecore