4,102 research outputs found
From buildings to cities: techniques for the multi-scale analysis of urban form and function
The built environment is a significant factor in many urban processes, yet direct measures of built form are
seldom used in geographical studies. Representation and analysis of urban form and function could provide
new insights and improve the evidence base for research. So far progress has been slow due to limited data
availability, computational demands, and a lack of methods to integrate built environment data with
aggregate geographical analysis. Spatial data and computational improvements are overcoming some of
these problems, but there remains a need for techniques to process and aggregate urban form data. Here we
develop a Built Environment Model of urban function and dwelling type classifications for Greater
London, based on detailed topographic and address-based data (sourced from Ordnance Survey
MasterMap). The multi-scale approach allows the Built Environment Model to be viewed at fine-scales for
local planning contexts, and at city-wide scales for aggregate geographical analysis, allowing an improved
understanding of urban processes. This flexibility is illustrated in the two examples, that of urban function
and residential type analysis, where both local-scale urban clustering and city-wide trends in density and
agglomeration are shown. While we demonstrate the multi-scale Built Environment Model to be a viable
approach, a number of accuracy issues are identified, including the limitations of 2D data, inaccuracies in
commercial function data and problems with temporal attribution. These limitations currently restrict the
more advanced applications of the Built Environment Model
Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems
When simulating molecular systems using deterministic equations of motion
(e.g., Newtonian dynamics), such equations are generally numerically integrated
according to a well-developed set of algorithms that share commonly agreed-upon
desirable properties. However, for stochastic equations of motion (e.g.,
Langevin dynamics), there is still broad disagreement over which integration
algorithms are most appropriate. While multiple desiderata have been proposed
throughout the literature, consensus on which criteria are important is absent,
and no published integration scheme satisfies all desiderata simultaneously.
Additional nontrivial complications stem from simulating systems driven out of
equilibrium using existing stochastic integration schemes in conjunction with
recently-developed nonequilibrium fluctuation theorems. Here, we examine a
family of discrete time integration schemes for Langevin dynamics, assessing
how each member satisfies a variety of desiderata that have been enumerated in
prior efforts to construct suitable Langevin integrators. We show that the
incorporation of a novel time step rescaling in the deterministic updates of
position and velocity can correct a number of dynamical defects in these
integrators. Finally, we identify a particular splitting that has essentially
universally appropriate properties for the simulation of Langevin dynamics for
molecular systems in equilibrium, nonequilibrium, and path sampling contexts.Comment: 15 pages, 2 figures, and 2 table
Arrays of Josephson junctions between unconventional superconductors
We study large arrays of mesoscopic junctions between gapless superconductors
where the tunneling processes of both, particle-hole and Cooper, pairs give
rise to a strongly retarded effective action which, contrary to the standard
case, can not be readily characterized in terms of a local Josephson energy.
This complexity is expected to arise in, e.g., the grain boundary and c-axis
junctions in layered high-T_c superconductors. A new representation for
describing collective phenomena in this system is introduced, and its phase
diagram is discussed, alongside the electrical conductivity.Comment: Latex, 4+ pages, 1 figur
Water-resource records of Brevard County, Florida
The U. S. Geological Survey made a comprehensive
investigation of the water resources of Brevard County
from 1954 to 1958. The purposes of this investigation were:
(1) to determine the occurrence and chemical quality of
water in the streams and lakes, (2) to determine the location
and the thickness of aquifers, and (3) to determine the
occurrence and chemical quality of the ground water. During
the period from 1933 to 1954, water records were collected
from a few stream-gaging stations and a few observation
wells. The purpose of this report is to present basic data
collected during these investigations. (Document has 188 pages.
Cluster optimisation using Cgroups at a tier-2
The Linux kernel feature Control Groups (cgroups) has been used to gather metrics on the resource usage of single and eight-core ATLAS workloads. It has been used to study the effects on performance of a reduction in the amount of physical memory. The results were used to optimise cluster performance, and consequently increase cluster throughput by up to 10%
Microscopic reversibility of quantum open systems
The transition probability for time-dependent unitary evolution is invariant
under the reversal of protocols just as in the classical Liouvillian dynamics.
In this article, we generalize the expression of microscopic reversibility to
externally perturbed large quantum open systems. The time-dependent external
perturbation acts on the subsystem during a transient duration, and
subsequently the perturbation is switched off so that the total system would
thermalize. We concern with the transition probability for the subsystem
between the initial and final eigenstates of the subsystem. In the course of
time evolution, the energy is irreversibly exchanged between the subsystem and
reservoir. The time reversed probability is given by the reversal of the
protocol and the initial ensemble. Microscopic reversibility equates the time
forward and reversed probabilities, and therefore appears as a thermodynamic
symmetry for open quantum systems.Comment: numerical demonstration is correcte
Random planar graphs and the London street network
In this paper we analyse the street network of London both in its primary and dual representation. To understand its properties, we consider three idealised models based on a grid, a static random planar graph and a growing random planar graph. Comparing the models and the street network, we find that the streets of London form a self-organising system whose growth is characterised by a strict interaction between the metrical and informational space. In particular, a principle of least effort appears to create a balance between the physical and the mental effort required to navigate the city
Nonequilibrium candidate Monte Carlo: A new tool for efficient equilibrium simulation
Metropolis Monte Carlo simulation is a powerful tool for studying the
equilibrium properties of matter. In complex condensed-phase systems, however,
it is difficult to design Monte Carlo moves with high acceptance probabilities
that also rapidly sample uncorrelated configurations. Here, we introduce a new
class of moves based on nonequilibrium dynamics: candidate configurations are
generated through a finite-time process in which a system is actively driven
out of equilibrium, and accepted with criteria that preserve the equilibrium
distribution. The acceptance rule is similar to the Metropolis acceptance
probability, but related to the nonequilibrium work rather than the
instantaneous energy difference. Our method is applicable to sampling from both
a single thermodynamic state or a mixture of thermodynamic states, and allows
both coordinates and thermodynamic parameters to be driven in nonequilibrium
proposals. While generating finite-time switching trajectories incurs an
additional cost, driving some degrees of freedom while allowing others to
evolve naturally can lead to large enhancements in acceptance probabilities,
greatly reducing structural correlation times. Using nonequilibrium driven
processes vastly expands the repertoire of useful Monte Carlo proposals in
simulations of dense solvated systems
- …
