28 research outputs found

    Universal light quark mass dependence and heavy-light meson spectroscopy

    Full text link
    Clean predictions are presented for all the spin-averaged heavy-light meson spectroscopies. A new symmetry is identified wherein the energy eigenstates have a universal dependence on both the light and heavy quark masses. This universality is used in an efficient analysis of these mesons within the QCD string/flux tube picture. Unique predictions for all the D, D_s, B, and B_s type mesons in terms of just four measured quantities.Comment: REVTeX4, 6 pages, 9 eps figure

    Reduction of the QCD string to a time component vector potential

    Full text link
    We demonstrate the equivalence of the relativistic flux tube model of mesons to a simple potential model in the regime of large radial excitation. We make no restriction on the quark masses; either quark may have a zero or finite mass. Our primary result shows that for fixed angular momentum and large radial excitation, the flux tube/QCD string meson with a short-range Coulomb interaction is described by a spinless Salpeter equation with a time component vector potential V(r) = ar - k/r.Comment: RevTeX4, 10 pages, 3 eps figure

    Nonperturbative QCD Vacuum Effects in Nonlocal Quark Dynamics

    Get PDF
    A straightforward calculation reveals the essentially nonlocal character of the leading heavy QQˉQ\bar{Q} interaction arising from nonperturbative gluon field correlations in the model of a fluctuating QCD vacuum. In light of this quarkonium spin splitting ratio predictions which have supported the scalar confinement ansatz are reconsidered as a specific example of possible consequences for spectroscopy.Comment: Latex, 9 page

    Hadronic Regge Trajectories: Problems and Approaches

    Get PDF
    We scrutinized hadronic Regge trajectories in a framework of two different models --- string and potential. Our results are compared with broad spectrum of existing theoretical quark models and all experimental data from PDG98. It was recognized that Regge trajectories for mesons and baryons are not straight and parallel lines in general in the current resonance region both experimentally and theoretically, but very often have appreciable curvature, which is flavor-dependent. For a set of baryon Regge trajectories this fact is well described in the considered potential model. The standard string models predict linear trajectories at high angular momenta J with some form of nonlinearity at low J.Comment: 15 pages, 9 figures, LaTe

    Glueball spectrum and the Pomeron in the Wilson loop approach

    Get PDF
    Using a nonperturbative method based on asymptotic behaviour of Wilson loops we calculate masses of glueballs and corresponding Regge-trajectories. The only input is string tension fixed by meson Regge slope, while perturbative contributions to spin splittings are defined by standard alpha_s values. The masses of lowest glueball states are in a perfect agreement with lattice results. The leading glueball trajectory which is associated with Pomeron is discussed in details and its mixing with f and f' trajectories is taken into account.Comment: LaTeX2e, 49 pages, 2 figure

    QCD string in light-light and heavy-light mesons

    Get PDF
    The spectra of light-light and heavy-light mesons are calculated within the framework of the QCD string model, which is derived from QCD in the Wilson loop approach. Special attention is payed to the proper string dynamics that allows us to reproduce the straight-line Regge trajectories with the inverse slope being 2\pi\sigma for light-light and twice as small for heavy-light mesons. We use the model of the rotating QCD string with quarks at the ends to calculate the masses of several light-light mesons lying on the lowest Regge trajectories and compare them with the experimental data as well as with the predictions of other models. The masses of several low-lying orbitally and radially excited heavy--light states in the D, D_s, B, and B_s meson spectra are calculated in the einbein (auxiliary) field approach, which has proven to be rather accurate in various calculations for relativistic systems. The results for the spectra are compared with the experimental and recent lattice data. It is demonstrated that an account of the proper string dynamics encoded in the so-called string correction to the interquark interaction leads to an extra negative contribution to the masses of orbitally excited states that resolves the problem of the identification of the D(2637) state recently claimed by the DELPHI Collaboration. For the heavy-light system we extract the constants \bar\Lambda, \lambda_1, and \lambda_2 used in Heavy Quark Effective Theory (HQET) and find good agreement with the results of other approaches.Comment: RevTeX, 42 pages, 7 tables, 7 EPS figures, uses epsfig.sty, typos corrected, to appear in Phys.Rev.

    Heavy Quarkonia: Wilson Area Law, Stochastic Vacuum Model and Dual QCD

    Get PDF
    The QQˉQ \bar{Q} semirelativistic interaction in QCD can be simply expressed in terms of the Wilson loop and its functional derivatives. In this approach we present the QQˉQ \bar{Q} potential up to order 1/m21/m^2 using the expressions for the Wilson loop given by the Wilson Minimal Area Law (MAL), the Stochastic Vacuum Model (SVM) and Dual QCD (DQCD). We confirm the original results given in the different frameworks and obtain new contributions. In particular we calculate up to order 1/m21/m^2 the complete velocity dependent potential in the SVM. This allows us to show that the MAL model is entirely contained in the SVM. We compare and discuss also the SVM and the DQCD potentials. It turns out that in these two very different models the spin-orbit potentials show up the same leading non-perturbative contributions and 1/r corrections in the long-range limit.Comment: 29 pages, revtex, 1 figure(fig1.ps); replaced with the last version that will appear in Phys. Rev. D (1March 1997); few misprints correcte
    corecore