133 research outputs found

    Assisted stellar suicide in V617 Sgr

    Full text link
    V617 Sgr is a V Sagittae star - a group of binaries thought to be the galactic counterparts of the Compact Binary Supersoft X-ray Sources - CBSS. To check this hypothesis, we measured the time derivative of its orbital period. Observed timings of eclipse minima spanning over 30,000 orbital cycles are presented. We found that the orbital period evolves quite rapidly: P/Pdot = 1.1 x 10^{6} years. This is consistent with the idea that V617 Sgr is a wind driven accretion supersoft source. As the binary system evolves with a time-scale of about one million years, which is extremely short for a low mass evolved binary, it is likely that the system will soon end either by having its secondary completely evaporated or by the primary exploding as a supernova of type Ia.Comment: 4 pages, accepted for publication in A&A Letter

    The Nature of the Hard-X-Ray Emitting Symbiotic Star RT Cru

    Full text link
    We describe Chandra High-Energy Transmission Grating Spectrometer observations of RT Cru, the first of a new sub-class of symbiotic stars that appear to contain white dwarfs (WDs) capable of producing hard X-ray emission out to greater than 50 keV. The production of such hard X-ray emission from the objects in this sub-class (which also includes CD -57 3057, T CrB, and CH Cyg) challenges our understanding of accreting WDs. We find that the 0.3 -- 8.0 keV X-ray spectrum of RT Cru emanates from an isobaric cooling flow, as in the optically thin accretion-disk boundary layers of some dwarf novae. The parameters of the spectral fit confirm that the compact accretor is a WD, and they are consistent with the WD being massive. We detect rapid, stochastic variability from the X-ray emission below 4 keV. The combination of flickering variability and a cooling-flow spectrum indicates that RT Cru is likely powered by accretion through a disk. Whereas the cataclysmic variable stars with the hardest X-ray emission are typically magnetic accretors with X-ray flux modulated at the WD spin period, we find that the X-ray emission from RT Cru is not pulsed. RT Cru therefore shows no evidence for magnetically channeled accretion, consistent with our interpretation that the Chandra spectrum arises from an accretion-disk boundary layer.Comment: 3 figures, accepted for publication in Ap

    WR 7a: a V Sagittae or a qWR star?

    Full text link
    The star WR 7a, also known as SPH 2, has a spectrum that resembles that of V Sagittae stars although no O VI emission has been reported. The Temporal Variance Spectrum - TVS - analysis of our data shows weak but strongly variable emission of O VI lines which is below the noise level in the intensity spectrum. Contrary to what is seen in V Sagittae stars, optical photometric monitoring shows very little, if any, flickering. We found evidence of periodic variability. The most likely photometric period is P(phot) = 0.227(14) d, while radial velocities suggest a period of P(spec) = 0.204(13) d. One-day aliases of these periods can not be ruled out. We call attention to similarities with HD 45166 and DI Cru (= WR 46), where multiple periods are present. They may be associated to the binary motion or to non-radial oscillations. In contrast to a previous conclusion by Pereira et al. (1998), we show that WR 7a contains hydrogen. The spectrum of the primary star seems to be detectable as the N V 4604A absorption line is visible. If so, it means that the wind is optically thin in the continuum and that it is likely to be a helium main sequence star. Given the similarity to HD 45166, we suggests that WR 7a may be a qWR - quasi Wolf-Rayet - star. Its classification is WN4h/CE in the Smith et al. (1996) three dimensional classification system.Comment: 6 pages, 6 figures, preprint of an article accepted for publication in Monthly Notices of The Royal Astronomical Societ

    Optical polarimetric monitoring of the type II-plateau SN 2005af

    Get PDF
    Aims. Core-collapse supernovae may show significant polarization that implies non-spherically symmetric explosions. We observed the type II-plateau SN 2005af using optical polarimetry in order to verify whether any asphericity is present in the supernova temporal evolution. Methods. We used the IAGPOL imaging polarimeter to obtain optical linear polarization measurements in R (five epochs) and V (one epoch) broadbands. Interstellar polarization was estimated from the field stars in the CCD frames. The optical polarimetric monitoring began around one month after the explosion and lasted ~30 days, between the plateau and the early nebular phase. Results. The weighted mean observed polarization in R band was [1.89 +/- 0.03]% at position angle (PA) 54 deg. After foreground subtraction, the level of the average intrinsic polarization for SN 2005af was ~0.5% with a slight enhancement during the plateau phase and a decline at early nebular phase. A rotation in PA on a time scale of days was also observed. The polarimetric evolution of SN 2005af in the observed epochs is consistent with an overall asphericity of ~20% and an inclination of ~30 deg. Evidence for a more complex, evolving asphericity, possibly involving clumps in the SN 2005af envelope, is found.Comment: 6 pages, 5 figures, to be published A&

    Discovery of optical pulsations in V2116 Ophiuchi/GX 1+4

    Get PDF
    We report the detection of pulsations with ∼124\sim 124 s period in V2116 Oph, the optical counterpart of the low-mass X-ray binary GX 1+4. The pulsations are sinusoidal with modulation amplitude of up to 4% in blue light and were observed in ten different observing sessions during 1996 April-August using a CCD photometer at the 1.6-m and 0.6-m telescopes of Laborat\'orio Nacional de Astrof\'{\i}sica, in Brazil. The pulsations were also observed with the UBVRIUBVRI fast photometer. With only one exception the observed optical periods are consistent with those observed by the BATSE instrument on board the Compton Gamma Ray Observatory at the same epoch. There is a definite correlation between the observability of pulsations and the optical brightness of the system: V2116~Oph had RR magnitude in the range 15.3−15.515.3-15.5 when the pulsed signal was detected, and R=16.0−17.7R = 16.0-17.7 when no pulsations were present. The discovery makes GX 1+4 only the third of ∼35\sim 35 accretion-powered X-ray pulsars to be firmly detected as a pulsating source in the optical. The presence of flickering and pulsations in V2116 Oph adds strong evidence for an accretion disk scenario in this system. The absolute magnitude of the pulsed component on 1996 May 27 is estimated to be MV∼−1.5M_V \sim -1.5. The implied dimensions for the emitting region are 1.1 R_{\sun}, 3.2 R_{\sun}, and 7.0 R_{\sun}, for black-body spectral distributions with T=105T = 10^5 K, 2×1042 \times 10^4 K, and 1×1041 \times 10^4 K, respectively.Comment: 9 pages, 3 figures in PostScript, latex, accepted for publication on the Astrophysical Journal Letter
    • …
    corecore