40 research outputs found

    Phonon-Metamorphosis in Ferromagnetic Manganite Films: Probing the Evolution of an Inhomogeneous State

    Get PDF
    The analysis of phonon anomalies provides valuable information about the cooperative dynamics of lattice, spin and charge degrees of freedom. Significant is the anomalous temperature dependence of the external modes observed in La2/3_{2/3}Sr1/3_{1/3}MnO3_{3} (LSMO) films. The two external modes merge close to the ferromagnetic to paramagnetic transition at TCT_C and, moreover, two new modes evolve in this temperature range with strong resonances at slightly higher frequencies. We propose that this observed phonon metamorphosis probes the inhomogeneous Jahn-Teller distortion, manifest on the temperature scale TCT_C. The analysis is based on the first observation of all eight phonon modes in the metallic phase of LSMO and on susceptibility measurements which identify a Griffiths-like phase.Comment: 4 pages, 4 figure

    Polaronic excitations in CMR manganite films

    Get PDF
    In the colossal magnetoresistance manganites polarons have been proposed as the charge carrier state which localizes across the metal-insulator transition. The character of the polarons is still under debate. We present an assessment of measurements which identify polarons in the metallic state of La{2/3}Sr{1/3}MnO{3} (LSMO) and La{2/3}Ca{1/3}MnO{3} (LCMO) thin films. We focus on optical spectroscopy in these films which displays a pronounced resonance in the mid-infrared. The temperature dependent resonance has been previously assigned to polaron excitations. These polaronic resonances are qualitatively distinct in LSMO and LCMO and we discuss large and small polaron scenarios which have been proposed so far. There is evidence for a large polaron excitation in LSMO and small polarons in LCMO. These scenarios are examined with respect to further experimental probes, specifically charge carrier mobility (Hall-effect measurements) and high-temperature dc-resistivity.Comment: 16 pages, 10 figure

    SOFIA: an automated security oracle for black-box testing of SQL-injection vulnerabilities

    No full text
    Security testing is a pivotal activity in engineering secure software. It consists of two phases: generating attack inputs to test the system, and assessing whether test executions expose any vulnerabilities. The latter phase is known as the security oracle problem. In this work, we present SOFIA, a Security Oracle for SQL-Injection Vulnerabilities. SOFIA is programming-language and source-code independent, and can be used with various attack generation tools. Moreover, because it does not rely on known attacks for learning, SOFIA is meant to also detect types of SQLi attacks that might be unknown at learning time. The oracle challenge is recast as a one-class classification problem where we learn to characterise legitimate SQL statements to accurately distinguish them from SQLi attack statements. We have carried out an experimental validation on six applications, among which two are large and widely-used. SOFIA was used to detect real SQLi vulnerabilities with inputs generated by three attack generation tools. The obtained results show that SOFIA is computationally fast and achieves a recall rate of 100% (i.e., missing no attacks) with a low false positive rate (0.6%)
    corecore