197 research outputs found

    On The Fine Tuning and Physical Origin of Line-Locked Absorption Systems in Active Galaxies

    Full text link
    Line locking (LL) of absorption line systems is a clear signature of the dynamical importance of radiation pressure force in driving astrophysical flows, with recent findings suggesting that it may be common in quasars exhibiting multiple intrinsic narrow absorption-line (NAL) systems. In this work we probe the phase space conducive to LL and follow the detailed kinematics of those systems that may lock at the velocity separation of the CIV λλ1548.19,1550.77\lambda\lambda 1548.19,1550.77 doublet. We find that a small volume of the phase-phase admits LL, suggesting a high-degree of fine-tuning between the physical properties of locked systems. The stability of LL against quasar luminosity variations is quantified with implications for the long-term variability amplitude of quasars and the velocity-separation statistic between multiple NAL systems. The high occurrence of LL by the CIV doublet implies that the hidden extreme-UV emission from quasars is unlikely to be significantly under-estimated by current models. Further, the ratio of the LL velocity to the outflow velocity may serve as a powerful constraint on the composition of the accelerating medium. We conclude that LL poses significant challenges to current theories for the formation of non-intervening NAL systems, and speculate that it may be a manifestation of expanding circumstellar shells around asymptotic giant branch (AGB) stars in the quasar-host bulge.Comment: 22 pages, 13 figures, ApJ in pres

    Strong Gravitational Lensing and the Structure of Quasar Outflows

    Full text link
    We show that by analyzing the spectra of lensed broad absorption line quasars (BALQSOs), it is possible to reveal key properties of the outflowing gas in the inner regions of these objects. This results from the fact that each image of the quasar corresponds to a different line of sight through the outflow. This combined with dynamical estimates for the location of the flow, adds new information concerning the lateral, non line of sight structure of the absorbing gas. Here we consider a sample of lensed BALQSOs and note that the similarity of BAL profiles of different images of the same quasar implies that the flow is relatively isotropic on small scales. We show that its geometry is inconsistent with the ballistically accelerated spherical cloud model, and that wind models provide a better description of the flow structure. Furthermore, observations seem to disagree with naive interpretations of recent time-dependent wind simulations. This may hint on several important physical processes that govern the structure and dynamics of such flows. Future prospects for the study of quasar outflows with the effect of strong gravitational lensing are discussed.Comment: 4 pages, 1 figure, accepted for publication in ApJ

    MUSE-inspired view of the quasar Q2059-360, its Lyman alpha blob, and its neighborhood

    Full text link
    The radio-quiet quasar Q2059-360 at redshift z=3.08z=3.08 is known to be close to a small Lyman α\alpha blob (LAB) and to be absorbed by a proximate damped Lyα\alpha (PDLA) system. Here, we present the Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy follow-up of this quasi-stellar object (QSO). Our primary goal is to characterize this LAB in detail by mapping it both spatially and spectrally using the Lyα\alpha line, and by looking for high-ionization lines to constrain the emission mechanism. Combining the high sensitivity of the MUSE integral field spectrograph mounted on the Yepun telescope at ESO-VLT with the natural coronagraph provided by the PDLA, we map the LAB down to the QSO position, after robust subtraction of QSO light in the spectral domain. In addition to confirming earlier results for the small bright component of the LAB, we unveil a faint filamentary emission protruding to the south over about 80 pkpc (physical kpc); this results in a total size of about 120 pkpc. We derive the velocity field of the LAB (assuming no transfer effects) and map the Lyα\alpha line width. Upper limits are set to the flux of the N V λ12381242\lambda 1238-1242, C IV λ15481551\lambda 1548-1551, He II λ1640\lambda 1640, and C III] λ15481551\lambda 1548-1551 lines. We have discovered two probable Lyα\alpha emitters at the same redshift as the LAB and at projected distances of 265 kpc and 207 kpc from the QSO; their Lyα\alpha luminosities might well be enhanced by the QSO radiation. We also find an emission line galaxy at z=0.33z=0.33 near the line of sight to the QSO. This LAB shares the same general characteristics as the 17 others surrounding radio-quiet QSOs presented previously. However, there are indications that it may be centered on the PDLA galaxy rather than on the QSO.Comment: Accepted for publication in Astronomy & Astrophysics; 16 pages, 19 figure

    The Dust Content of Galaxy Clusters

    Full text link
    We report on the detection of reddening toward z ~ 0.2 galaxy clusters. This is measured by correlating the Sloan Digital Sky Survey cluster and quasar catalogs and by comparing the photometric and spectroscopic properties of quasars behind the clusters to those in the field. We find mean E(B-V) values of a few times 10^-3 mag for sight lines passing ~Mpc from the clusters' center. The reddening curve is typical of dust but cannot be used to distinguish between different dust types. The radial dependence of the extinction is shallow near the cluster center suggesting that most of the detected dust lies at the outskirts of the clusters. Gravitational magnification of background z ~ 1.7 sources seen on Mpc (projected) scales around the clusters is found to be of order a few per cent, in qualitative agreement with theoretical predictions. Contamination by different spectral properties of the lensed quasar population is unlikely but cannot be excluded.Comment: 4 pages, 3 figure

    Spectroscopy of extended Ly\alpha\ envelopes around z=4.5 quasars

    Full text link
    What are the frequency, shape, kinematics, and luminosity of Ly\alpha\ envelopes surrounding radio-quiet quasars at high redshift, and is the luminosity of these envelopes related to that of the quasar or not? As a first step towards answering these questions, we have searched for Ly\alpha\ envelopes around six radio-quiet quasars at z~4.5, using deep spectra taken with the FORS2 spectrograph attached to the UT1 of the Very Large Telescope (VLT). Using the multi-slit mode allows us to observe several point spread function stars simultaneously with the quasar, and to remove the point-like emission from the quasar, unveiling the faint underlying Ly\alpha\ envelope with unprecedented depth. An envelope is detected around four of the six quasars, which suggests that these envelopes are very frequent. Their diameter varies in the range 26<d<64 kpc, their surface brightness in the range 3x10^{-19}<\mu<2x10^{-17} erg/s/cm^2/arcsec^2, and their luminosity in the range 10^{42}<L(Ly\alpha)<10^{44} erg/s. Their shape may be strongly asymmetric. The Ly\alpha\ emission line full width at half maximum (FWHM) is 900<FWHM<2200 km/s and its luminosity correlates with that of the broad line region (BLR) of the quasar, with the notable exception of BR2237-0607, the brightest object in our sample. The same holds for the relation between the envelope Ly\alpha\ luminosity and the ionizing luminosity of the quasar. While the deep slit spectroscopy presented in this paper is very efficient at detecting very faint Ly\alpha\ envelopes, narrow-band imaging is now needed to measure accurately their spatial extent, radial luminosity profile, and total luminosity. These observables are crucial to help us discriminate between the three possible radiation processes responsible for the envelope emission: (i) cold accretion, (ii) fluorescence induced by the quasar, and (iii) scattering of the BLR photons by cool gas.Comment: 10 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    XMM-Newton Spectroscopy of the Starburst Dominated Ultra Luminous Infrared Galaxy NGC 6240

    Full text link
    We present new XMM-Newton observation of the Ultra Luminous Infrared Galaxy (ULIRG) NGC 6240. We analyze the reflecting grating spectrometer (RGS) data, and data from the other instruments, and find a starburst dominated 0.5-3 keV spectrum with global properties resembling those observed in M82 but with a much higher luminosity. We show that the starburst region can be divided into an outer zone, beyond a radius of about 2.1 kpc, with a gas temperature of about 10^7 K and a central region with temperatures in the range (2-6) x 10^7 K. The gas in the outer region emits most of the observed Oviii Lyman-alpha line and the gas in the inner region the emission lines of higher ionization ions, including a strong Fexxv line. We also identify a small inner part, very close to the active nuclei, with typical Seyfert 2 properties including a large amount of photoionized gas producing a strong Fe K-alpha 6.4 keV line. The combined abundance, temperature and emission measure analysis indicates super solar Ne/O, Mg/O, Si/O, S/O and possibly also Fe/O. The analysis suggests densities in the range of (0.07-0.28) x epsilon^(-1/2) cm^(-3) and a total thermal gas mass of about 4 x 10^8 x epsilon^(1/2) solar masses, where epsilon is the volume filling factor. We used a simple model to argue that a massive starburst with an age of about 2 x 10^7 years can explain most of the observed properties of the source. NGC 6240 is perhaps the clearest case of an X-ray bright luminous AGN, in a merger, whose soft X-ray spectrum is dominated by a powerful starburst.Comment: 10 pages, 6 diagrams, accepted by ApJ, added a few minor change

    Continuum reverberation mapping of MCG 08-11-011

    Full text link
    We report the results from a photometric reverberation mapping campaign carried out with the C18 telescope at the Wise Observatory from 2019 to 2020, targeting the active galactic nucleus (AGN) MCG 08-11-011. The monitoring was conducted on a daily basis with specially designed narrow-band filters, spanning from optical to near-infrared wavelengths (4000\sim4000 to 80008000{\AA}) and avoiding prominent broad emission lines. We aim to measure inter-band continuum time lags, determine the size-wavelength relation, and estimate the host-subtracted AGN luminosity for this system. We used the point-spread function photometry to extract the continuum light curves and measure the inter-band time lags using several methods, including the interpolated cross-correlation function, the z-transformed discrete correlation function, a von Neumann estimator, JAVELIN (in spectroscopic and photometric mode), MICA, and a multivariate correlation function. We find wavelength-dependent lags, τ(λ)\tau(\lambda), up to \sim7 days between the multiband light curves of MCG 08-11-011. The observed lags are larger than predictions based on standard thin-disk theory by a factor of 37\sim3-7. We discern a significantly steeper (τλ4.74\tau \propto \lambda^{4.74}) size-wavelength relation than the τλ4/3\tau \propto \lambda^{4/3} expected for a geometrically thin and optically thick accretion disk, which may result from the contribution of diffuse continuum emission to the flux. These results are similar to those found by previous continuum reverberation mapping campaigns.Comment: arXiv admin note: text overlap with arXiv:2111.0738

    Photon Production From The Scattering of Axions Out of a Solenoidal Magnetic Field

    Full text link
    We calculate the total cross section for the production of photons from the scattering of axions by a strong inhomogeneous magnetic field in the form of a 2D delta-function, a cylindrical step function and a 2D Gaussian distribution, which can be approximately produced by a solenoidal current. The theoretical result is used to estimate the axion-photon conversion probability which could be expected in a reasonable experimental situation. The calculated conversion probabilities for QCD inspired axions are bigger by a factor of 2.67 (for the cylindrical step function case) than those derived by applying the celebrated 1D calculation of the (inverse) coherent Primakoff effect. We also consider scattering at a resonance EaxionmaxionE_{axion} \sim m_{axion}, which corresponds to the scattering from a delta-function and gives the most enhanced results. Finally, we analyze the results of this work in the astrophysical extension to suggest a way in which they may be directed to a solution to some basic solar physics problems and, in particular, the coronal heating problem.Comment: 19 pages, 1 figure, added analysis of our results in the astrophysical extensio
    corecore