769 research outputs found
Observation of Single Transits in Supercooled Monatomic Liquids
A transit is the motion of a system from one many-particle potential energy
valley to another. We report the observation of transits in molecular dynamics
(MD) calculations of supercooled liquid argon and sodium. Each transit is a
correlated simultaneous shift in the equilibrium positions of a small local
group of particles, as revealed in the fluctuating graphs of the particle
coordinates versus time. This is the first reported direct observation of
transit motion in a monatomic liquid in thermal equilibrium. We found transits
involving 2 to 11 particles, having mean shift in equilibrium position on the
order of 0.4 R_1 in argon and 0.25 R_1 in sodium, where R_1 is the nearest
neighbor distance. The time it takes for a transit to occur is approximately
one mean vibrational period, confirming that transits are fast.Comment: 19 pages, 8 figure
Hydrophobic interactions: an overview
We present an overview of the recent progress that has been made in
understanding the origin of hydrophobic interactions. We discuss the different
character of the solvation behavior of apolar solutes at small and large length
scales. We emphasize that the crossover in the solvation behavior arises from a
collective effect, which means that implicit solvent models should be used with
care. We then discuss a recently developed explicit solvent model, in which the
solvent is not described at the atomic level, but rather at the level of a
density field. The model is based upon a lattice-gas model, which describes
density fluctuations in the solvent at large length scales, and a Gaussian
model, which describes density fluctuations at smaller length scales. By
integrating out the small length scale field, a Hamiltonian is obtained, which
is a function of the binary, large-length scale field only. This makes it
possible to simulate much larger systems than hitherto possible as demonstrated
by the application of the model to the collapse of an ideal hydrophobic
polymer. The results show that the collapse is dominated by the dynamics of the
solvent, in particular the formation of a vapor bubble of critical size.
Implications of these findings to the understanding of pressure denaturation of
proteins are discussed.Comment: 10 pages, 4 figure
Inherent-Structure Dynamics and Diffusion in Liquids
The self-diffusion constant D is expressed in terms of transitions among the
local minima of the potential (inherent structure, IS) and their correlations.
The formulae are evaluated and tested against simulation in the supercooled,
unit-density Lennard-Jones liquid. The approximation of uncorrelated
IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature
range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST
are associated with a hopping mechanism, the condition D ~ D_{0} provides a new
way to identify the crossover to hopping. The results suggest that theories of
diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR
Forced motion of a probe particle near the colloidal glass transition
We use confocal microscopy to study the motion of a magnetic bead in a dense
colloidal suspension, near the colloidal glass transition volume fraction
. For dense liquid-like samples near , below a threshold force
the magnetic bead exhibits only localized caged motion. Above this force, the
bead is pulled with a fluctuating velocity. The relationship between force and
velocity becomes increasingly nonlinear as is approached. The
threshold force and nonlinear drag force vary strongly with the volume
fraction, while the velocity fluctuations do not change near the transition.Comment: 7 pages, 4 figures revised version, accepted for publication in
Europhysics Letter
Exact Criterion for Determining Clustering vs. Reentrant Melting Behavior for Bounded Interaction Potentials
We examine in full generality the phase behavior of systems whose constituent
particles interact by means of potentials which do not diverge at the origin,
are free of attractive parts and decay fast enough to zero as the interparticle
separation r goes to infinity. By employing a mean field-density functional
theory which is shown to become exact at high temperatures and/or densities, we
establish a criterion which determines whether a given system will freeze at
all temperatures or it will display reentrant melting and an upper freezing
temperature.Comment: 5 pages, 3 figures, submitted to PRL on March 29, 2000 New version:
10 pages, 9 figures, forwarded to PRE on October 16, 200
What does the potential energy landscape tell us about the dynamics of supercooled liquids and glasses?
For a model glass-former we demonstrate via computer simulations how
macroscopic dynamic quantities can be inferred from a PEL analysis. The
essential step is to consider whole superstructures of many PEL minima, called
metabasins, rather than single minima. We show that two types of metabasins
exist: some allowing for quasi-free motion on the PEL (liquid-like), the others
acting as traps (solid-like). The activated, multi-step escapes from the latter
metabasins are found to dictate the slowing down of dynamics upon cooling over
a much broader temperature range than is currently assumed
The Potential Energy Landscape and Mechanisms of Diffusion in Liquids
The mechanism of diffusion in supercooled liquids is investigated from the
potential energy landscape point of view, with emphasis on the crossover from
high- to low-T dynamics. Molecular dynamics simulations with a time dependent
mapping to the associated local mininum or inherent structure (IS) are
performed on unit-density Lennard-Jones (LJ). New dynamical quantities
introduced include r2_{is}(t), the mean-square displacement (MSD) within a
basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t)
the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t)
posesses an interval of linear t-dependence allowing calculation of an
intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin
dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds
the time, tau_{pl}, needed for the system to explore the basin, indicating the
action of barriers. The distinction between motion among the IS below T_{c} and
saddle, or border dynamics above T_{c} is discussed.Comment: submitted to pr
The potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects
It is possible to formulate the thermodynamics of a glass forming system in
terms of the properties of inherent structures, which correspond to the minima
of the potential energy and build up the potential energy landscape in the
high-dimensional configuration space. In this work we quantitatively apply this
general approach to a simulated model glass-forming system. We systematically
vary the system size between N=20 and N=160. This analysis enables us to
determine for which temperature range the properties of the glass former are
governed by the regions of the configuration space, close to the inherent
structures. Furthermore, we obtain detailed information about the nature of
anharmonic contributions. Moreover, we can explain the presence of finite size
effects in terms of specific properties of the energy landscape. Finally,
determination of the total number of inherent structures for very small systems
enables us to estimate the Kauzmann temperature
Computer investigation of the energy landscape of amorphous silica
The multidimensional topography of the collective potential energy function
of a so-called strong glass former (silica) is analyzed by means of classical
molecular dynamics calculations. Features qualitatively similar to those of
fragile glasses are recovered at high temperatures : in particular an intrinsic
characteristic temperature K is evidenced above which the
system starts to investigate non-harmonic potential energy basins. It is shown
that the anharmonicities are essentially characterized by a roughness appearing
in the potential energy valleys explored by the system for temperatures above
.Comment: 5 pages; accepted for publication in PR
Spectral Signatures of the Diffusional Anomaly in Water
Analysis of power spectrum profiles for various tagged particle quantities in
bulk SPC/E water is used to demonstrate that variations in mobility associated
with the diffusional anomaly are mirrored in the exponent of the \onebyf\
region. Monitoring of \onebyf behaviour is shown to be a simple and direct
method for linking phenomena on three distinctive length and time scales: the
local molecular environment, hydrogen bond network reorganisations and the
diffusivity. The results indicate that experimental studies of supercooled
water to probe the density dependence of spectral features, or
equivalent stretched exponential behaviour in time-correlation functions, will
be of interest.Comment: 5 Pages, 4 Figure
- …