2,331 research outputs found

    The thermopower as a fingerprint of the Kondo breakdown quantum critical point

    Full text link
    We propose that the thermoelectric power distinguishes two competing scenarios for quantum phase transitions in heavy fermions : the spin-density-wave (SDW) theory and breakdown of the Kondo effect. In the Kondo breakdown scenario, the Seebeck coefficient turns out to collapse from the temperature scale E∗E^{*}, associated with quantum fluctuations of the Fermi surface reconfiguration. This feature differs radically from the physics of the SDW theory, where no reconstruction of the Fermi surface occurs, and can be considered as the hallmark of the Kondo breakdown theory. We test these ideas, upon experimental results for YbRh2_2Si2_2

    Spinon-Holon binding in t−Jt-J model

    Full text link
    Using a phenomenological model, we discuss the consequences of spinon-holon binding in the U(1) slave-boson approach to t−Jt-J model. Within a small xx (x=x= hole concentration) expansion, we show that spinon-holon binding produces a pseudo-gap normal state with a segmented Fermi surface and the superconducting state is formed by opening an "additional" d-wave gap on the segmented Fermi surface. The d-wave gap merge with the pseudo-gap smoothly as temperature T→0T\to0. The quasi-particles in the superconducting state are coupled to external electromagnetic field with a coupling constant of order xγx^{\gamma} where 0≤γ≤1/20\leq\gamma\leq1/2, depending on the strength of the effective spinon-holon binding potential.Comment: 9 pages, 3 figure

    Boundary-induced violation of the Dirac fermion parity and its signatures in local and global tunneling spectra of graphene

    Full text link
    Extended defects in graphene, such as linear edges, break the translational invariance and can also have an impact on the symmetries specific to massless Dirac-like quasiparticles in this material. The paper examines the consequences of a broken Dirac fermion parity in the framework of the effective boundary conditions varying from the Berry-Mondragon mass confinement to a zigzag edge. The parity breaking reflects the structural sublattice asymmetry of zigzag-type edges and is closely related to the previously predicted time-reversal symmetric edge states. We calculate the local and global densities of the edge states and show that they carry a specific polarization, resembling, to some extent, that of spin-polarized materials. The lack of the parity leads to a nonanalytical particle-hole asymmetry in the edge-state properties. We use our findings to interpret recently observed tunneling spectra in zigzag-terminated graphene. We also propose a graphene-based tunneling device where the particle-hole asymmetric edge states result in a strongly nonlinear conductance-voltage characteristics, which could be used to manipulate the tunneling transport.Comment: 8 pages, 5 figures, to be published in Phys. Rev.

    Tunneling spectra of layered strongly correlated d-wave superconductors

    Full text link
    Tunneling conductance experiments on cuprate superconductors exhibit a large diversity of spectra that appear in different nano-sized regions of inhomogeneous samples. In this letter, we use a mean-field approach to the tt't''J model in order to address the features in these spectra that deviate from the BCS paradigm, namely, the bias sign asymmetry at high bias, the generic lack of evidence for the Van Hove singularity, and the occasional absence of coherence peaks. We conclude that these features can be reproduced in homogeneous layered d-wave superconductors solely due to a proximate Mott insulating transition. We also establish the connection between the above tunneling spectral features and the strong renormalization of the electron dispersion around (0,pi) and (pi,0) and the momentum space anisotropy of electronic states observed in ARPES experiments.Comment: 4 pages, 3 figures. Added comment on the role of sample inhomogeneity. Published version. Homepage http://dao.mit.edu/~wen

    Analaysis of Long-Eared Owl (\u3ci\u3eAsio otus\u3c/i\u3e) Pellets from Eastern Nebraska

    Get PDF
    A common way to determine the food habits of an owl is to analyze prey remains found within regurgitated pellets, called owl pellets. We collected and analyzed owl pellets found under a Long-eared Owl (Asio otus) roost in eastern Nebraska as part of two grade school science fair projects. The results are presented here to add to the knowledge about the food habits of this species in Nebraska

    Nonlinear photon transport in a semiconductor waveguide-cavity system containing a single quantum dot: Anharmonic cavity-QED regime

    Full text link
    We present a semiconductor master equation technique to study the input/output characteristics of coherent photon transport in a semiconductor waveguide-cavity system containing a single quantum dot. We use this approach to investigate the effects of photon propagation and anharmonic cavity-QED for various dot-cavity interaction strengths, including weakly-coupled, intermediately-coupled, and strongly-coupled regimes. We demonstrate that for mean photon numbers much less than 0.1, the commonly adopted weak excitation (single quantum) approximation breaks down, even in the weak coupling regime. As a measure of the anharmonic multiphoton-correlations, we compute the Fano factor and the correlation error associated with making a semiclassical approximation. We also explore the role of electron--acoustic-phonon scattering and find that phonon-mediated scattering plays a qualitatively important role on the light propagation characteristics. As an application of the theory, we simulate a conditional phase gate at a phonon bath temperature of 2020 K in the strong coupling regime.Comment: To appear in PR

    Unconventional Hall effect in pnictides from interband interactions

    Full text link
    We calculate the Hall transport in a multiband systems with a dominant interband interaction between carriers having electron and hole character. We show that this situation gives rise to an unconventional scenario, beyond the Boltzmann theory, where the quasiparticle currents dressed by vertex corrections acquire the character of the majority carriers. This leads to a larger (positive or negative) Hall coefficient than what expected on the basis of the carrier balance, with a marked temperature dependence. Our results explain the puzzling measurements in pnictides and they provide a more general framework for transport properties in multiband materials.Comment: 5 pages, 2 figure

    Self-localized impurities embedded in a one dimensional Bose-Einstein condensate and their quantum fluctuations

    Full text link
    We consider the self-localization of neutral impurity atoms in a Bose-Einstein condensate in a 1D model. Within the strong coupling approach, we show that the self-localized state exhibits parametric soliton behavior. The corresponding stationary states are analogous to the solitons of non-linear optics and to the solitonic solutions of the Schroedinger-Newton equation (which appears in models that consider the connection between quantum mechanics and gravitation). In addition, we present a Bogoliubov-de-Gennes formalism to describe the quantum fluctuations around the product state of the strong coupling description. Our fluctuation calculations yield the excitation spectrum and reveal considerable corrections to the strong coupling description. The knowledge of the spectrum allows a spectroscopic detection of the impurity self-localization phenomenon.Comment: 7 pages, 5 figure

    Polarons and Molecules in a Two-Dimensional Fermi Gas

    Full text link
    We study an impurity atom in a two-dimensional Fermi gas using variational wave functions for (i) an impurity dressed by particle-hole excitations (polaron) and (ii) a dimer consisting of the impurity and a majority atom. In contrast to three dimensions, where similar calculations predict a sharp transition to a dimer state with increasing interspecies attraction, we show that the polaron ansatz always gives a lower energy. However, the exact solution for a heavy impurity reveals that both a two-body bound state and distortions of the Fermi sea are crucial. This reflects the importance of particle-hole pairs in lower dimensions and makes simple variational calculations unreliable. We show that the energy of an impurity gives important information about its dressing cloud, for which both ans\"atze give inaccurate results.Comment: 5 pages, 2 figures, minor change

    Suppression of electron relaxation and dephasing rates in quantum dots caused by external magnetic fields

    Full text link
    An external magnetic field has been applied in laterally coupled dots (QDs) and we have studied the QD properties related to charge decoherence. The significance of the applied magnetic field to the suppression of electron-phonon relaxation and dephasing rates has been explored. The coupled QDs have been studied by varing the magnetic field and the interdot distance as other system parameters. Our numerical results show that the electron scattering rates are strongly dependent on the applied external magnetic field and the details of the double QD configuration.Comment: 13 pages, 6 figure
    • …
    corecore