56 research outputs found

    Distinguishing cancerous from non-cancerous cells through analysis of electrical noise

    Full text link
    Since 1984, electric cell-substrate impedance sensing (ECIS) has been used to monitor cell behavior in tissue culture and has proven sensitive to cell morphological changes and cell motility. We have taken ECIS measurements on several cultures of non-cancerous (HOSE) and cancerous (SKOV) human ovarian surface epithelial cells. By analyzing the noise in real and imaginary electrical impedance, we demonstrate that it is possible to distinguish the two cell types purely from signatures of their electrical noise. Our measures include power-spectral exponents, Hurst and detrended fluctuation analysis, and estimates of correlation time; principal-component analysis combines all the measures. The noise from both cancerous and non-cancerous cultures shows correlations on many time scales, but these correlations are stronger for the non-cancerous cells.Comment: 8 pages, 4 figures; submitted to PR

    Next-generation cell line selection methodology leveraging data lakes, natural language generation and advanced data analytics

    Get PDF
    Cell line development is an essential stage in biopharmaceutical development that often lies on the critical path. Failure to fully characterise the lead clone during initial screening can lead to lengthy project delays during scale-up, which can potentially compromise commercial manufacturing success. In this study, we propose a novel cell line development methodology, referenced as CLD4, which involves four steps enabling autonomous data-driven selection of the lead clone. The first step involves the digitalisation of the process and storage of all available information within a structured data lake. The second step calculates a new metric referenced as the cell line manufacturability index (MICL) quantifying the performance of each clone by considering the selection criteria relevant to productivity, growth and product quality. The third step implements machine learning (ML) to identify any potential risks associated with process operation and relevant critical quality attributes (CQAs). The final step of CLD4 takes into account the available metadata and summaries all relevant statistics generated in steps 1–3 in an automated report utilising a natural language generation (NLG) algorithm. The CLD4 methodology was implemented to select the lead clone of a recombinant Chinese hamster ovary (CHO) cell line producing high levels of an antibody-peptide fusion with a known product quality issue related to end-point trisulfide bond (TSB) concentration. CLD4 identified sub-optimal process conditions leading to increased levels of trisulfide bond that would not be identified through conventional cell line development methodologies. CLD4 embodies the core principles of Industry 4.0 and demonstrates the benefits of increased digitalisation, data lake integration, predictive analytics and autonomous report generation to enable more informed decision making

    Polypeptide-grafted macroporous polyHIPE by surface-initiated N-Carboxyanhydride (NCA) polymerization as a platform for bioconjugation

    Get PDF
    A new class of functional macroporous monoliths from polymerized high internal phase emulsion (polyHIPE) with tunable surface functional groups was developed by direct polypeptide surface grafting. In the first step, amino-functional polyHIPEs were obtained by the addition of 4-vinylbenzyl or 4-vinylbenzylphthalimide to the styrenic emulsion and thermal radical polymerization. The obtained monoliths present the expected open-cell morphology and a high surface area. The incorporated amino group was successfully utilized to initiate the ring-opening polymer- ization of benzyl-L-glutamate N-carboxyanhydride (BLG NCA) and benzyloxycarbonyl-L-lysine (Lys(Z)) NCA, which resulted in a dense homogeneous coating of polypeptides throughout the internal polyHIPE surfaces as confirmed by SEM and FTIR analysis. The amount of polypeptide grafted to the polyHIPE surfaces could be modulated by varying the initial ratio of amino acid NCA to amino-functional polyHIPE. Subsequent removal of the polypeptide protecting groups yielded highly functional polyHIPE-g-poly(glutamic acid) and polyHIPE-g- poly(lysine). Both types of polypeptide-grafted monoliths responded to pH by changes in their hydrohilicity. The possibility to use the high density of function (−COOH or −NH2) for secondary reaction was demonstrated by the successful bioconjugation of enhanced green fluorescent protein (eGFP) and fluorescein isocyanate (FITC) on the polymer 3D-scaffold surface. The amount of eGFP and FITC conjugated to the polypeptide-grafted polyHIPE was significantly higher than to the amino- functional polyHIPE, signifying the advantage of polypeptide grafting to achieve highly functional polyHIPEs

    A bodhisattva-spirit-oriented counselling framework: inspired by Vimalakīrti wisdom

    Get PDF

    Cytotoxicity of Metal and Semiconductor Nanoparticles Indicated by Cellular Micromotility.

    No full text
    In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods. The method is validated by conventional cytotoxicity testing and accompanied by fluorescence and dark-field microscopy to visualize changes in the cytoskeleton integrity and to determine the location of the particles within the cell
    corecore