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Cell line development is an essential stage in biopharmaceutical development that
often lies on the critical path. Failure to fully characterise the lead clone during
initial screening can lead to lengthy project delays during scale-up, which can
potentially compromise commercial manufacturing success. In this study, we
propose a novel cell line development methodology, referenced as CLD4, which
involves four steps enabling autonomous data-driven selection of the lead clone.
The first step involves the digitalisation of the process and storage of all available
information within a structured data lake. The second step calculates a newmetric
referenced as the cell line manufacturability index (MICL) quantifying the
performance of each clone by considering the selection criteria relevant to
productivity, growth and product quality. The third step implements machine
learning (ML) to identify any potential risks associated with process operation and
relevant critical quality attributes (CQAs). The final step ofCLD4 takes into account
the available metadata and summaries all relevant statistics generated in steps
1–3 in an automated report utilising a natural language generation (NLG)
algorithm. The CLD4 methodology was implemented to select the lead clone
of a recombinant Chinese hamster ovary (CHO) cell line producing high levels of
an antibody-peptide fusion with a known product quality issue related to end-
point trisulfide bond (TSB) concentration. CLD4 identified sub-optimal process
conditions leading to increased levels of trisulfide bond that would not be
identified through conventional cell line development methodologies. CLD4

embodies the core principles of Industry 4.0 and demonstrates the benefits of
increased digitalisation, data lake integration, predictive analytics and autonomous
report generation to enable more informed decision making.
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1 Introduction

Cell line development (CLD) is a critical task within
biopharmaceutical manufacturing and selects the lead clone for
the master cell bank (MCB) which provides the starting material
for the entire life span of a therapeutic drug candidate. Traditional
methods for CLD are time-consuming and require a large number of
experiments to identify the best candidate, which can lead to delays
in the development timeline and higher costs. This selection process
typically aims to achieve two objectives. The first is to reduce a large
heterogeneous pool of between a 1,000–10,000 cell lines to a single
clone expressing high levels of a therapeutic protein that meet all
relevant product quality specifications (Munro et al., 2017). The
second is to ensure the selected lead clone will scale-up appropriately
and consistently deliver the required product demand whilst

achieving the desired product quality specifications. Both
objectives are equally important; however, the majority of
research focuses on the first objective of selecting a high
producing clone, with scale-up considerations a secondary
objective. This oversight is normally due to strict timelines and
availability of data resulting in a decision on the lead clone selection
before an in-depth evaluation of all scale-up and process
considerations can be properly accessed. This paper proposes a
more holistic methodology for CLD that better leverages the data
generated during CLD to select the lead clone to satisfy productivity,
quality and scalability objectives.

A summary of some CLD related challenges is depicted in
Figure 1. The first challenge relates to the early stages of CLD
where the focus is on high-throughput evaluation of thousands of
clone candidates cultured using a low volume (<1 mL) and operated

FIGURE 1
Schematic diagram summarizing the number of candidate clones, lead clone cell cultures, data recorded and available information on the lead clone
for a typical therapeutic protein as it transitions from micro-scale (<0.1 L) to pilot scale manufacturing (250 L). The number of clone candidates is
highlighted by the purple line, the number of lead clone culture runs is shown by the green line and data available at each scale by the brown line which is
primarily defined by either off-line analytics or both off-line and online process data recorded at each scale. The available information trend line
shown in black is a function of the number of lead clone cultures multiplied by the data available at the various scales.
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in batch mode. The initial screening typically involves a high
number of candidates assessed using high-throughput 96 well
plates or microtitre plates (MTPs). Subsequent screening of
hundreds of clones can be performed in high throughput fed-
batch using multi-well plates in automated culturing systems
(Rameez et al., 2014; Silk et al., 2010). The early stages of CLD
follow a well-established procedure to appropriately select the cell
lines that can move forward (Lin et al., 2019; Li et al., 2010; Hong
et al., 2018). The cell lines are transfected with the gene of interest for
the targeted product, methods include transfecting plasmids
through calcium phosphate, cationic lipid-based lipofection,
electroporation and using polymer-based reagents amongst others
(Li et al., 2010). These high-throughput platforms screen using cell
markers, typically MTX (methotrexate) or MSX (methionine
sulfoximine) for glutamine synthetase (GS) mediated cells (Li
et al., 2010; Lin et al., 2019). Each selected cell is then cloned
into its own colony, as regulators require evidence that the cells are
derived from a single progenitor cell to ensure monoclonality
(European Medicines Agency, 2006; Chen et al., 2020). Methods
such as single cell printing using the ClonePix system and
Fluorescence-activated cell sorting (FACS) flow cytometry are
methods implemented to ensure separate cell lines for their
colonies (Kim, Diao, and Shuler, 2012). In order to identify a
stable highly expressing cell line that meets the desired quality
requirements a high number of candidates are required to be
assessed. This involves various analytical assays such as ELISA to
eliminate non-producing cells, followed by subsequent screening for
highly productive clones (Kim, Diao, and Shuler, 2012; Frye et al.,
2016). These initial cell line screenings experiments typically involve
the use of high-throughput 96 well plates or microtitre plates
(MTPs). These experiments are time-consuming, do not
accurately reflect scale-up conditions and require a significant
amount of analytical equipment to evaluate best performing cell
lines. Furthermore, the low volume of these batch cultures during
initial screening restricts the availability of off-line analytics
resulting in the assessment criteria for each clone solely
dependent on protein concentration and/or cell growth metrics.

In order to speed up the selection of the most productive cell
lines and reduce product development timelines, the industry has
developed different high throughput (HT) methods. Systems
such as microtitre plates (MTPs) with a volume of 100–400 μL
are great during initial screening allowing for HT runs in parallel,
however they lack automation and their orbital shaking design
can generate variability in comparison to other systems (Li et al.,
2010; Huang and Kwiatkowski, 2015). Deep well plates (DWP)
with a volume of 0.5–2 mL also have HT capabilities however
similar to MTPs can be affected by poor mixing as their shaking is
not comparable to mixing performed by impellers (Ben-
Tchavtchavadze, Perrier, and Jolicoeur, 2007; Huang and
Kwiatkowski, 2015). Additional automated systems have also
been developed such as the SimCell™ microfluidic and micro-
bioreactor systems; the Pall Micro24 system with a deep well
design, each mini reactor has a standard baffled design and a
working volume of up to 7 mL (Warr et al., 2013; Huang and
Kwiatkowski, 2015). These systems have control units that
monitor cell culture process parameters and can successfully
predict key product quality attributes; it has also shown
potential for scale-up applications through media screening

and process optimisation (Ravindran et al., 2019; Huang and
Kwiatkowski, 2015; Whitford, 2006). Other popular HT
microbioreactor systems include the ambr® 15 cell culture and
ambr® 250 systems that contain impellers and are comparable
scale-down mimics of bench-scale systems (Huang and
Kwiatkowski, 2015).

As shown in Figure 1, the micro-bioreactor stage is one of the
most important stages as it is the first stage where both off-line
and on-line process variables are recorded. At this stage the
number of clones has been reduced to manageable numbers in the
region of 10–100 clones. Additionally, this is the first stage of the
selection process that evaluates the impact of controlling the key
environment variables (e.g., pH and dissolved oxygen) in
conjunction with fed-batch operation on the key productivity
and growth metrics of each clone. This stage of the CLD process is
a critical decision point in the selection of the lead clone as all the
necessary information is available to make an informed decision
on the optimum choice of lead clone as both process and off-line
data analytics are available. However, this decision is heavily
focused on off-line productivity metrics such as final titre with
little consideration of the on-line variables such as pH or
dissolved oxygen (DO2). Yet, these environmental variables
can have a major influence on the metabolism of mammalian
cell cultures; for example, Konakovsky et al. (2016) demonstrated
the impact of adjusting the pH set-point on the production and
consumption rates of lactic acid in addition to influencing the
glucose consumption rates. Therefore, it is important to better
understand the impact of these environment variables on the
available productivity and growth metrics at this stage as they
may play a significant role as the lead clone is scaled to
commercial manufacturing. The on-line data is therefore a
very valuable asset as it can help assess problems during scale-
up such as evaluating the oxygen consumption rate of the cells to
ensure the final commercial-scale bioreactor can meet the oxygen
requirements for those high yielding cells (Garcia-Ochoa and
Gomez, 2009). Furthermore, having access and analysing all of
this data might highlight some latent operation issues that
require subsequent evaluation and could pose a material
impact on the tight timelines.

This paper outlines the development of a data-driven
methodology to enhance lead clone selection that not only
considers the available titre concentration and product quality
that is the primary source of information during conventional
CLD but also leverages the significant untapped data resource
containing all the available off-line, on-line and metadata. To
help automate this selection process this paper outlines the use of
a simple natural language generation (NLG) algorithm to
evaluate all available information which summarises and
contextualises the large volume of information into a human
readable report. This automatically generated report outlines the
key metrics and other useful correlations to assist the operator for
their lead clone selection. This methodology aims to remove a
significant burden of time on all scientists and engineers that
repeatedly spend large amounts of time on writing up and
presenting results on this critical business decision. This
autonomous cell line selection protocol demonstrates a novel
application of NLG within the biopharmaceutical space that
leverages all data within the data lake. This enables more

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Goldrick et al. 10.3389/fbioe.2023.1160223

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1160223


informed data-driven decisions that pave the way towards
Industry 4.0 implementation within the bioprocessing
manufacturing sector.

2 Materials and methods

2.1 Cell line, culture propagation, and
bioreactor systems

All cell lines used a Chinese hamster ovary (CHO) host that
expressed high levels of an antibody-peptide fusion protein and
were cultivated in chemically defined CHO media. The cells were
maintained at 37°C under 5% carbon dioxide, shaken at a
constant rpm and passaged 2–3 times per week for
propagation and scale-up for inoculation. The cell line
screening was carried out on an advanced micro-bioreactor
ambr® 15 system (Sartorius., 2020) with 48 single vessels split
into four separate culture stations where each vessel was operated
with a 11–15 mL working volume. The temperature and pH of
each culture station was controlled to 33°C and 7.0, respectively
and the agitation rate was ramped up to ensure the dissolved
oxygen concentration of 50% could be maintained. The feeding
strategy involved five equally spaced additions of the feed after
the initial feed day indicated. The culture pH was controlled to
7.0 through the addition of sodium carbonate and sparging with
CO2 gas with its control strategy implementing a pH dead-band
equal to 0.1. Antifoam was added as required. Daily at-line
samples were analysed for viable cell density (VCD) and
viability (Viab) using the Vi-Cell Automated Cell Viability
Analyzer (Beckman Coulter, Brea, CA, United States), and
glucose (Gluc) and lactate (Lact) were analysed using the
2900D Biochemistry Analyzer (YSI, Yellow Springs, Ohio,
United States). The rpm set-points, initial seeding density, and
supplemented feeds contain proprietary information,
which prevents us from providing details about them in this
section.

2.2 Titre analysis and purity

Volumetric antibody-peptide fusion titres (Titre) in cell
culture supernatants were quantified by protein A affinity
chromatography using a protein A ImmunoDetection sensor
cartridge (Applied Biosystems, Warrington, United Kingdom)
coupled to an Agilent 1,200 series HPLC (Agilent, Berkshire,
United Kingdom). Peak areas relative to a reference standard
calibration curve were used to calculate titres. These samples
were measured on days 8, 10, 12, and 14 for the ambr® 15 system.
The trisulfide bond (TSB) was quantified through a TQS triple
quadrupole mass spectrometer (Waters, Milford, MA,
United States). The monomer purity including fragment and
aggregate concentration was monitored with high-performance
size exclusion chromatography (HP-SEC) using a TSK-GEL
G3000SWXL column (7.8 mm × 30 cm) from Tosoh
Bioscience (King of Prussia, PA, United States) with an
Agilent 1200 HPLC system (Agilent Technologies, Santa Clara,
CA, United States).

2.3 Cell line manufacturability index (MICL)

The cell line manufacturability index (MICL) adapts the standard
weighted sum model (Fishburn, 1967) that has been used in the
biotech sector to weigh up conflicting criteria for process decisions
(Pollock et al., 2017), capacity sourcing decisions (George et al.,
2007) and manufacturability indices for formulations (Yang et al.,
2017). MICL aggregates all available productivity, product quality
and growth parameters into a single metric enabling easier
evaluation and comparison of m cell lines considering n criteria:

MICL,i � ∑
j�n

j�1
wj × rij for i � 1, 2, 3 . . .m (1)

where wi is the normalised weight of each criteria j and rij is the
dimensionless rating of cell line i and criteria j, calculated as:

rij � xij − xj,worst

xj,best − xj,worst

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ (2)

where xij is the individual ranking of cell line i for criteria j, xj,best is
the best overall ranking for criteria j and xj,worst is the worst cell line
ranking for criteria j. xj,best and xj,worst are subjectively defined as
either a maximum or minimum for each individual criteria based on
expert knowledge. For example, for the parameter titre, xj,best would
be the highest titre based on analysing all available titres in the cell
line selection and xj,worst would be the lowest titre concentration.
However, for final lactate concentration, xj,best would be the lowest
lactate concentration with xj,worst equal to the highest concentration.
The wj is the normalised weight of each criteria and can be adjusted
for an individual project. The weight can be dependent on several
factors including the mode of action of the molecule, market
demand, sub-class of molecule (e.g., different weightings and
criteria can be selected for monoclonal antibodies (mAbs),
fragment antibodies (Fabs), bispecifics, or fusion proteins). The
normalised weights ensure that the best possible
manufacturability index of an individual cell line MICL would be
less than or equal to 1, i.e., if a cell line i has the best value for each
criteria j its MICL would be equal to 1.

2.4 Rule-based natural language generation

The automatically generated report developed in this work
implemented a rule-based natural language generation (NLG)
algorithm based around the architecture designed for Data-to-
Text systems outlined by Becker et al. (2007). The Data-to-Text
systems are NLG algorithms that are specifically designed to
generate texts from sensor data or other relevant non-linguistic
data types. Four stages are required to implement this approach to
generate a text from data:

• Signal Analysis: Analysis of the numerical data to identify
correlations and useful trends.

• Data Interpretation: Identifying the key messages or patterns
within the data.

• Document Planning: Deciding on a document structure that
will communicate the key messages from the data analysis and
interpretation.
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• Microplanning and Realisation: Creating the actual text using
the NLG.

Within this work the “Signal Analysis” and “Data
Interpretation” stages were completed in steps 2 and 3 of the
CLD4 methodology. The “Document Planning” and
“Microplanning and Realisation” were completed by Step 4 of the
CLD4 and used a simple template to communicate the key messages
from the data analysis relevant to the decision making within CLD.
The metrics utilised within the report were calculated using Eqs 3, 4.
These included the required capacity to meet the production target
based on an estimated number of patients and dose size of the drug
within the CLD pipeline.

Dproduct � Npatients × dpatient year (3)
Vbatch � Dproduct

Test × Nbatches × YDSP × Ps
(4)

where Dproduct is the annual product demand (g), Npatients is the
estimated number of target patients, dpatient_year is the annual dose
required per patient (g), Vbatch is the bioreactor working volume
required per batch (L), Test is the estimated titre from the lead clone
(g L−1), Nbatches is number of batches per year, YDSP is the expected
overall process yield (%) and Ps is the batch success rate.

2.5 Data analysis and visualisation

All online, offline, and meta data were imported and analyzed
using algorithms developed in Python 3.9.12 (Python programming
language) and Matlab 2021b (The MathWorks, Inc., Natick, MA). R
(R Foundation for Statistical Computing, Version 4.1.2, Vienna,
Austria) was used to generate the correlation matrix. Matlab 2021b
was used to visualise all the graphs.

3 Results and discussion

Data is now a major asset for biopharmaceutical companies that
continues to grow in both size and complexity, and yet to date this
data resource has not yet been fully exploited (Narayanan et al.,
2020). This paper helps address this issue within cell line
development, where only a small fraction of the available data is
utilised in lead clone selection. This work proposes a novel data-
driven workflow to improve selection of the lead clone through the
analysis of multiple interconnected sources of information using
advanced machine learning algorithms. This workflow represents
the next-generation of lead clone selection by leveraging all available
information for better decision making. The workflow is referenced
as CLD4 as it involves four steps and embodies the core principles of
Industry 4.0 enabling autonomous data-driven decisions. The first
step of CLD4 involves pulling the data in its raw format into a data
lake and subsequently classifying the data into different categories,
storing the data appropriately within a data warehouse in addition to
preprocessing and calculating key features within the data. The
second step assesses this structured data within the data warehouse
to calculate a new metric referenced as the Cell Line
Manufacturability index (MICL) which ranks all individual cell
lines based on selected criteria. The third step involves the

application of data analytics using the preprocessed data from
step 1 to gain an understanding of how the process operation
influences the critical quality attributes and to highlight any
potential issues that may occur during scale-up operations and/or
commercial manufacturing. Step 4 autonomously generates a report
utilising the essential bits of information calculated from Step 1 and
theMICL from Step 2 to select the lead clone in addition to compiling
the key insights generated from the data analytics from Step 3. In
addition to selecting the lead clone, this final fourth step provides
recommendations supporting long-term business decisions related
to capacity planning and future production targets based on
additional metadata recorded by the scientists.

3.1 CLD4 step 1: data classification and
storage

The first step of CLD4 was to import all the unstructured raw
data related to the cell line development activities into a data lake. A
summary of the raw data types is outlined in Table 1. Part of this
data transformation involves classifying all available
biopharmaceutical data related to CLD activities into five
different categories: 1. Process Parameters, 2. Growth, 3.
Productivity, 4. Product Quality and 5. Meta-information. A
detailed description of the 5 categories used in this work is
shown in Table 1 which outlines the frequency, storage system
and format of the data.

It is evident from Table 1 that one of the major challenges with
the consolidation and digitalisation of these raw data sources within
the data lake is the multiple formats and storage locations of each
data type. This challenge was echoed by Steinwandter et al, (2019)
who discussed the multiple data formats and outputs recorded by
the different analytical devices and bioreactor systems to be one of
the major challenges faced by the biopharmaceutical industry. To
help alleviate these issues, there are a number of initiatives such as
FAIR data principles (Wilkinson, 2016) that aim to improve
infrastructure for better data management and ensure the data is
Findable, Accessible, Interoperable and Reusable. Additional
standards include the Allotrope Data Format (Millecam et al.,
2021) that has the goal of standardising these data formats
within industry by ensuring all analytical providers and vendors
output their data in a standardised platform-independent data
format (i.e., HDF5), which could greatly simplify the
consolidation and curation of the data. For this work, an in-
house algorithm was developed to gather and store all the data
resources shown in Table 1 into a data lake. The raw data then
follows an ETL (Extract Transform Load) procedure where the data
is extracted from the raw sources and mapped to a large queryable
table within a data warehouse. The ETL algorithm imported all the
data recorded by the ambr 15 bioreactor that resulted in the
importation of a total of 592 csv files (12 csv files per cell culture
run and 4 csv files per cell culture station) in addition to importing
all other data recorded from each of the analytical devices outlined in
Table 2. All this information was converted into a queryable format
within the data warehouse based on bioreactor ID, timestamp and
source of each data type, this allows all of the online, offline andmeta
information of each bioreactor run to be easily extracted and used
for subsequent analysis. The data was stored as JavaScript Object
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Notation (JSON) files which is a lightweight format for storing and
transporting data, is easy to read and can handle different data types
and formats. By structuring this data within a data warehouse,
algorithms can be universally applied to the data regardless of
previous data format, structure or stage in the screening process
which greatly simplifies the application of data analytics. Within this
paper the primary focus is on the data recorded during the
microbioreactor stage as this stage contains the most amount of
information as outlined in Figure 1. Combining data from early and/
or late screening could further improve the decision on lead clone
provided the cell lines are labelled consistently across the scales and
the offline analytics are available for analysis.

To simplify the analysis and reduce the complexity of the
available time-series data stored in the data warehouse, a
selection of features were extracted from this data. The features
calculated in this work included the maximum, minimum, end
point, cumulative, average, standard deviation, and time above/
below set-point as summarised in Table 2. The feature selection
method used in this paper is based on industrial experience and the
features selected were found to be suitable for this case study.
However, Table 2 is not a comprehensive list of features and
additional features could be added or removed during on the
process. The calculation of these engineered features plays a
crucial role in steps 2, 3, and 4 of the CLD4 methodology and
has twomajor advantages. The first is the significant reduction of the
data size, this is particularly important for the on-line variables. For
example, the pH recorded for an individual ambr® 15 bioreactor cell
culture typically contains ~15,000 data points, based on a 90 s
interval for a 16 days period. The majority of the important
trends within this pH trend can be summarised by only 6 new
features (max, min, end-point, average, std, time above set-point

(S.P) and time below S.P) resulting in a drastic reduction of the data
in addition to greatly simplifying the subsequent analysis and
visualisation of the data. Using the suggested features shown in
Table 2, this can be reduced to 6 data points resulting in ~2,500 fold
reduction in data. This data reduction also significantly improves the
ease of data analysis in comparison to analysing the complete time-
series. Goldrick et al. (2017) highlighted the challenge of using the
complete time-series data for end-point predictions of a CQA which
involved complex batch-wise unfolding operations, data pre-
processing and interpolation methods before a robust PLS and
MLR model could be generated.

3.2 CLD4 step 2: cell line manufacturability
index (MICL) calculation

The next step formulates the selection of a lead clone as a multi-
criteria decision-making problem enabling scientists to evaluate the
performance of each individual clone. The new metric is referenced
as the cell line manufacturability index (MICL). The MICL was
calculated for the 48 clones using the 20 selection criteria shown
in Figure 2. For illustration purposes; Figure 2 shows the top and
bottom 12 clones ranked from 1–12 and 36–48 based on theirMICL
value. The MICL is a weighted sum metric defined by Eq.1 that
considers 20 different selection criteria related to key features
extracted in step 1 that summaries the productivity, growth,
product quality of each cell line. The rating of each selection
criteria was calculated using Eq. 2, where xi,worst and xi,best, is the
worst and best value for each cell line within the run, respectively.
The maximum possible value of MICL is equal to 1 taking into
account the weight of each criteria as defined in Eq. 1. The raw data

TABLE 1 The five data classifications related to CLD4 are summarized by their recording frequency, source and storage format.

Category Description Frequency Source Format Examples

Process
parameters

Bioreactor process conditions Every 1–90 s Single bioreactor system
(ambr® 15) includes all data
recorded by multiple sensors

Multiple csv files with
bioreactor ID and timestamps
(proprietary format)

Process data and set-points of
dissolved oxygen (DO2),
temperature (T), pH (pH), stirrer
speed (RPM) and gas flow rates
(FO2, FCO2)

Growth All variables related to cellular
growth and nutrient
consumption

Every 24 h Recorded across multiple
analytical devices (e.g., YSI
2900, Vi-Cell XR cell counter)

All data saved with timestamp
and unique bioreactor
reference on internal server
and exported as csv/excel
format

Glucose (Gluc), lactate (Lact),
viable cell density (VCD), growth
rate (Spec growth rate)

Productivity Off-line variables recorded Every 24/48 h Recorded across multiple
analytical devices (e.g.,
Agilent 1,200 series HPLC)

Specific to analytical
instrument, data exported
using Excel based template
containing bioreactor ID and
timestamp

Titre concentration (mAb) and
specific productivity (qantibody)

Product
quality

Information specific to protein
structure

Recorded at
harvest of cell
culture run

Recorded across multiple
analytical devices (SEC-
UPLC, Xevo TQS triple
quadrupole mass
spectrometer)

Specific to analytical
instrument, data exported
using Excel based template
containing bioreactor ID and
timestamp

Monomer (Mono), aggregation
(Agg) and trisulfide bond (TSB)

Metadata Non-numerical data recorded,
includes cell culture process
observations and predicted
target market of molecule

Infrequent/not
often recorded

No standard recording
format, electronic lab
notebooks, PowerPoint
presentations and
management meeting

No standard format, manually
recorded by scientist with
additional information
requested by upper
management

Foaming observations,
contamination issues, molecule
reference, estimated patient dose
and estimated market demand
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TABLE 2 A summary of variables and their engineered features within each of the five data categories by CLD4 implementation. Control strategy outlines the objective within the bioreactor to either maximum (Max.), minimise
(Min.) or control the variable at its set-point (S.P.).

Variable (Units) Control strategy Feature engineering

Max Min End point Cumul Avg Std Time above S. P.(hrs) Time below S.P. (hrs)

Productivity

Titre (mg L−1) Max ✓ 7 ✓ 7 ✓ 7 7 7

qantibody (pg cell−1 day−1) Max ✓ ✓ ✓ 7 ✓ 7 7 7

Growth

VCD (cells × 106 mL−1) Max ✓ 7 ✓ 7 ✓ 7 7 7

Viability (%) Max ✓ ✓ ✓ 7 ✓ 7 7 7

Lactate (g L−1) Min ✓ 7 ✓ 7 ✓ 7 7 7

Glucose (g L−1) S.P. ✓ ✓ ✓ 7 ✓ 7 ✓ ✓

Product Quality

Aggregates (%) Min Endpoint only

Fragments (%) Min Endpoint only

Monomer (%) Max Endpoint only

Trisulfide bond (%) Min Endpoint only

Process Parameters

Temperature (oC) S.P. ✓ ✓ ✓ 7 ✓ ✓ ✓ ✓

pH (−) S.P. ✓ ✓ ✓ 7 ✓ ✓ ✓ ✓

DO2 (%) S.P. ✓ ✓ ✓ 7 ✓ ✓ ✓ ✓

Base addition (mL) S.P. 7 7 7 ✓ 7 7 7 7

FlowO2 (mL min-1) S.P. ✓ 7 ✓ ✓ 7 7 7 7

FlowCO2 (mL min-1) S.P. ✓ 7 ✓ ✓ 7 7 7 7

Metadata

Project ID reference Scientist Inoculation date Bioreactor
position

Cell line reference Projected Titre Molecule reference Observations Estimated patient dose
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stored in the data warehouse utilised for the selection of the top
clones in this work is shown in Figure 2. Considering the selection
criteria for the maximum titre (Titre (Max)) of the 48 clones
displayed in Figure 2, the lowest (“worst”) titre was clone 30 with
a titre equal to 1.2 g L−1 which equated to a rating value (rij) of 0,

indicated by the dark blue pattern. The highest (“best”) titre was cell
line 19 with a value equal to 6.3 g L−1, resulting in a rij of 1, indicated
by the dark red pattern. Within the data set evaluated in this study
there were three variables which had a reverse rating where the
higher the value the lower the rating, i.e., lactate (Lact)

FIGURE 2
Calculation of the MICL for the top 12 and bottom 12 clones based on the dimensionless rating (r) of the data from the 20 variables multiplied by the
selected weights (w) of each variable. The raw data for each clone is shown in the data matrix and each column is coloured coded from high (dark red) to
low (dark blue) based on the variables’ dimensionless rating.

FIGURE 3
MICL calculated for each of the 48 clones of the ambr

®
15 that considered all 20 variables with their predefined weighting where the top 5 clones are

shown in blue and identified in order as 8, 19, 3 10, and 4.
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concentration, aggregate (Agg) concentration and trisulfide bond
(TSB) concentration. For these variables, the lowest experimentally
recorded value has the highest rating, i.e., the “best” experimental
condition and vice versa for the lowest value. This is demonstrated
by considering the variable lactate where the lowest (“best”) lactate
end point (Lact (EP)) was 0.3 g L−1 produced by Clone 6 and was

given a ri,j rating of 1 and the highest lactate end-point was equal to
7.0 g L−1 recorded by clone 15 and given a ri,j equal to 0.

Each of the selection criteria was given the weights displayed in
Figure 2, and for this CLD study, the selection criteria for growth
and productivity were all given equal weightings of 1. The choice of
equal weighting for growth and productivity was based on scientific

FIGURE 4
Time course profiles and bar graphs of 48 cell lines considered in this work. The cell lines shown in blue highlight the top cell lines selected using the
highestMICL values and those in red were not selected. The figures are separated into their four data categories where the productivity graphs are shown
in (A,B) for Titre (mg L−1) and qAntibody (pg cell−1 day−1). The growth category highlights (C) Lactate (g L−1), (D) VCD (cellsx106 mL−1), (E) Glucose (g L−1) and
(F) Viability (%). The process parameters are shown in (G) pH(−), (H) Cumul. Base (mL) and (I) DO2 (%). The product quality variables are shown by (J)
Monomer conc (%) and (K) Trisulfide bond (%).
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experience and knowledge, for example, it has shown previously that
high cell densities and low viabilities can lead to a significant increase
in process impurities such as lipids, intracellular proteins and
nucleic acids (Roush and Lu, 2008). Additionally, it is has been
reported that cell lines that remain in a lactate production state and
do not switch to a lactate consumption state towards the end of the
culture run can yield low cell growth and productivities (Hartley
et al., 2018). Therefore, the growth-related parameters of VCD
(Max, Mean & End-point), Viab (Max, Min & End-point) and
Lact (Max, Mean & End-point) were all given equal weighting in
comparison to the productivity metrics of Titre (Max,Min,Mean, &
End-point) and qp (Max, Min &End-point). The weightings and
choice of variables to be included in this analysis can easily be
adjusted to account for different user requirement specifications.

However, as a result of the prior knowledge that high TSB
concentrations can alter the potency and physical chemical

properties of the protein (Goldrick et al., 2017), the TSB
concentration at end-point (TSB EP) was given a higher
weighting equal to 3 to ensure the top clones had minimum TSB
levels. Typically, within CLD in addition to the key productivity and
growth metrics there may be additional CQAs to be considered to
ensure certain quality standards are met. These can include CQAs
such as purity, potency, and efficacy which can have an impact on
the therapeutic drug’s safety and effectiveness in treating the target
disease. Other CQAs can be important for downstream processing
such as the concentration of fragments or aggregates. The
calculation of the MICL can consider multiple CQAs, the only
challenge in adding additional CQAs is deciding on their weight
as if these CQAs are more important that some CPPs such as final
lactate concentration then the weighting may need to be increased.
Hence in this case study the TSB concentration was given a
weighting of 3 as it was determined to be sufficient to ensure the

FIGURE 5
Data analysis of the engineered features for the 48 clones with (A,B) showing the scores and loadings graph, respectively, of the first and second
principal component (PC) from PCA analysis and (C) shows the correlation matrix calculated on the same data.
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top 5 clones all had 0% TSB concentrations as can be seen in
Figure 2.

Using the selection criteria and weights shown the top five
clones were 8, 19, 3, 10, and 4 based on their calculatedMICL equal to
0.89, 0.85, 0.84 0.84, and 0.79 as shown in Figure 3. To highlight the
performance of these top 5 clones in comparison to the other
48 clones considered in this selection process, some variables are
shown in Figure 4. The MICL provides a simple and comprehensive
numerical value summarising the performance of each individual
clone considering both the cell lines’ ranking within each criteria and
the relative importance of each criteria. This simple metric greatly
simplifies the scientist’s decision in selecting the lead clones that
demonstrate favourable growth, productivity and product quality
values.

Figure 4 highlights time-course and end-point concentrations
of selected variables from each of the four categories:
productivity, growth, process parameters and product quality.
The observed deviations give an early indication of how these
clones will respond to the hydrodynamic shear, shifts in cell
culture environmental conditions such as pH, temperature and
DO2 and impact of metabolites concentrations changes such as
varying glucose or lactate that may vary at scale-up. The top five
clones selected based on the highest MICL demonstrated high
productivity and favourable growth patterns whilst maintaining
desired critical quality attributes. The top two clones yielded high
titre concentrations equal to 6.3 g L−1 (clone 19) and 5.2 g L−1

(clone 5) which is a key criteria to minimise operating costs by
reducing the capacity requirements at scale-up and confidently
meet market demand (Li et al., 2010; Frye et al., 2016; Priola et al.,
2016; Krebs et al., 2018). Clone 19 resulted in a four-fold increase
in titre compared to clone 30 with the lowest titre equal to
1.2 g L−1. Lin et al. (2019) has investigated the variability in
high producing CHO clones and observed a similar 3-4 fold
increase from 0.1 g L−1 to 0.4 g L−1; they attributed the variability

to the selection marker and observed the use of attenuated
glutamine synthetase (GS) which removed the need for
methionine sulfoxamine (MSX) and was shown to generate
more stable clones with high productivities. Subsequent
process development activities such as adaptive feeding
strategies could further increase productivities of these clones
as demonstrated by Gagnon et al. (Gagnon et al., 2011), who
reported yields in the region of 9–10 g L−1. However, in addition
to high productivities it is paramount to ensure the product
quality remains within specification as highlighted in Figure 4A
where clones 7 and 9 outperformed three of the top five clones but
as these both had high levels of TSB their overall MICL was
reduced and therefore they were not selected. Furthermore, this
work could be extended to evaluate the risk of the lead clone
being out of specification, which may be a useful metric to ensure
a stable and robust clone is selected. This demonstrates the
flexibility of the MICL metric as the weights can easily be
changed to select a cell line most appropriate for scale-up and
commercialisation.

There were also a significant number of clones that had high
lactate metabolism towards the end of a culture run as shown in
Figure 4C. The MICL takes this into consideration by considering
the maximum, end-point and mean lactate concentration; if
minimising lactate concentration at the end of the culture is a
key criteria then the weight of the end-point lactate (wLactEP)
could be increased. This is related to the amount of base added
which is significantly lower for the top 5 clones in comparison to
the other clones as shown in Figure 4H). The high volume of base
added is due to the high number of clones where there was no
back metabolism of lactate as shown in Figure 4C), thus
additional base is required to maintain the pH at its setpoint.
The cell lines with the high base addition and high lactate end-
point also had a much lower viability which can also be observed
in Figure 4F). The selected five clones were also shown to have
high viability with an end-point value of between 88.7% and 92%,
this was in stark contrast to some of the other clones that had low
viability, e.g., clones 12 and 23 both had an end point viability
equal to 33% as shown in Figures 2, 4F. The inclusion of the
viability in the MICL is paramount as highlighted by researchers
that viability below a certain percentage can be problematic to
DSP operations (Papathanasiou et al., 2017). The product quality
measurements are displayed as bar graphs as only end-points
were available for these measurements. Figures 4J, K show the
monomer concentration and TSB, respectively with the top
5 clones shown to have the highest purity levels between
96.6% and 98.5% and all had 0% TSB.

3.3 CLD4 step 3: data analysis

Steps 1 and 2 of the CLD4 methodology utilise the available
data within the categories related to productivity, growth and
product quality to select the top 5 clones. Typically, these three
categories are the only data types considered during the selection
process and the online process parameters defining the cell
culture environment are usually ignored. One of the primary
reasons for the exclusion of this data is due to the challenge of
extracting useful information from these high dimensional data

FIGURE 6
Time series profiles of the pH values of the 48 cell cultures
considered which are coloured based on their final TSB (%)
concentrations, where low TSB is between 0%–7%, medium TSB is
between 7%–14% and high TSB is between 14%–21%.
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sets. Considering the time-series data shown for the 48 clones
shown in Figure 4, it is almost impossible to conclude what is the
optimal pH profile (displayed in Figure 4G) or investigate if the
dissolved oxygen deviations shown in Figure 4I are influencing
the growth parameters. Step 3 of this CLD4 methodology aims to
solve these issues by combining feature engineering with the use
of ML. The features generated for all the cell culture data was
previously discussed in Step 1 of the CLD4. These newly created
features were then analysed using principal component analysis
(PCA). To negate the impact of different units used by PCA, all of
the analysis was done by first normalizing the data by subtracting
the mean and dividing by the standard deviation. This
normalization process ensures that variables of different units
can be evaluated together. The scores and loadings plots of the
data analysed are shown in Figures 5A, B, respectively and were
generated as described in the materials and methods. The PCA
considered a total of 24 features extracted from each of the
48 clones with the first and second principal components
accounting for 45% and 21% of the total variance,
respectively. The selected parameters used here were based on
user experience and could be extended to include more variables.
The scores plot shown in Figure 5A classifies the “Top 5 Clones”
(Clones 8, 19, 3, 10, and 4) based on achieving the highest MICL
values (calculated in Step 2) and the remaining clones were
classified as “below target clones”. The classification within the
loadings plot in Figure 5B is based on the four previously
described categories. Through the analysis of the scores and
loadings plots, the top five clones cluster together based on

similar end-point concentrations of titre (mAb E.P) and VCD
(VCD Max) in addition to similar end-point and cumulative flow
rates of O2 (Flow O2 E.P. and Flow O2 Cumul.). The titres of
these clones ranged between 4–6 g L−1 and had approximately
40–50 × 106 cells mL−1 at harvest as previously shown in Figures
2, 4. The high cell densities associated with these top clones
corresponded to the expected high consumption rates of oxygen
(Flow O2 EP and Flow O2 Cumul.) as the oxygen uptake rate
(OUR) consumption is typically a function of cell density
(Deshpande and Heinzle, 2004).

Additional insights can be leveraged by examining the two
distinct clusters observed in the PCA figure between the “below
target clones” and the “Top 5 clones” with both clusters exhibiting
similar process characteristics. The cluster shown in the right
quadrants of the scores plot are correlated with high lactate and
glucose concentrations (Lact E.P., Lact Max, Gluc E.P., and Gluc
Max) and distinguished by their higher pH values (pH time below
S.P, pH time above S.P, pH Std). Although each of these clones are
controlled using a fixed pH set-point of 7, the wide deadband of the
pH controller observed in Figure 4G allows the pH to drift between
the upper and lower bands of this pH set-point. These cell culture
runs all had high-end point lactate as observed in Figure 4C, where
the end-point lactate concentration was as high as 8 g L−1. As
expected the Pearson’s correlation coefficient (R2) between the
maximum lactate concentrations and minimum viability (Viab
min) is equal to 0.9; this reduction in viability was shown to
significantly decrease the productivity of these cells and
corresponded to negative correlation with productivity values

FIGURE 7
A sample of the natural language generation rule-based template used in this report. The document template text is highlighted in black, user input
data highlighted in purple and text generated using a function shown in green.
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equal to −0.5 as shown in Figure 5C. Similar statistics were reported
by Le et al. (2012) through their analysis of 234 cell culture runs and
found a R2 value of −0.87 between final lactate concentration and
product yield. This high negative correlation between lactate
production and productivity values demonstrates the importance
of selecting clones that are shown to back-metabolise lactate but also
highlights the influence the environmental conditions within the
bioreactor on these clones.

The second cluster of clones is located to the left of the scores
plots and highlights some very interesting correlations between
the four cell culture categories of productivity, growth, process
parameters and product quality. The cluster primarily consists of
clones 36–48 and the most notable variable defining the
characteristics of this cluster is the high levels of TSB
concentration (10%–20%) associated with each of these clones,
which is evident in Figure 4J). The high TSB concentrations were
considered an important CQA and therefore gaining an
understanding of the process parameters that minimise TSB
concentration is of tremendous value for subsequent scale-up
activities. Through the analysis of the loadings plot shown in
Figure 5B, it suggests high pH operation leads to significantly
increased TSB concentrations. This is evident on the loadings
graph based on a similar positioning of the TSB and the
pH average Day 0–7 & 7–14, pH average, pH time above S.P
with respect to PC-1. This is further validated through the
correlation matrix shown in Figure 5C, where the TSB

concentration and pH average day 0–7 has an R2 equal to
0.8 and an R2 equal to 0.7 for both the average pH and
pH standard deviation. High pH levels were previously shown
to influence TSB concentrations with cell culture operations
(Goldrick et al., 2017). The significant influence of pH on the
TSB only becomes obvious when the online pH data of the
48 clones is plotted using a coloured based classification of the
end-point TSB concentration as shown in Figure 6. Although all
the process operation set-points for each clone were fixed some
fluctuations around the set-points was observed, this can be seen
in Figure 6 where the pH has a set-point equal to 7 with a dead-
band equal to 0.1. It is clear from Figure 6 that the clones that
operated for the majority of the culture closer to the upper band
of the pH dead-band equal to 7.1 had a higher end point
concentration of >15% TSB. Whereas, those clones that
operated closer to the bottom of the pH dead-band equal to
6.9 had much lower TSB concentrations of between 0% and 6%. It
was previously demonstrated that higher pH levels (above 7)
towards the end of the cell culture run could promote TSB
formation (Goldrick et al., 2017). Additionally it was
suggested by (Nielsen et al., 2011) that TSB formation can
result from a nucleophilic attack of the sulfide ion (SH−) on
the disulfide bond of the protein resulting in the formation of a
trisulfide bond and this reaction requires a pH at or above
neutral, similar to the pH ranges shown for high TSB
concentrations shown in Figure 6. Therefore, it is evident that

FIGURE 8
A summary of the CLD4 methodology that includes the Manufacturability Index (MICL), data analysis and NLG report ensuring better lead clones can
be selected during CLD that scale-up appropriately and meet the necessary production targets of the drug.
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the pH environment of the bioreactor plays a significant role on
TSB concentrations and highlights the need for a tighter control
of pH to minimise these deviations. During conventional cell line
selection screening, the on-line variables such as pH are generally
not considered and therefore this issue would not have been
identified. However, step 3 of CLD4 allows for these important
correlations to be identified and leverages the power of PCA
analysis to identify hidden process characteristics that may
influence process performance.

3.4 CLD4 step 4: autonomous report
generation

The final step of the CLD4 methodology is to summarise the
insights gained within steps 1–3 in an electronic format enabling
better decision making to support long-term business objectives and
mitigate any potential risks that may impact scale-up activities. Steps
1–3 considered all the information from the four categories of
productivity, growth, process parameters and product quality
outlined in Table 1. Step 4 takes into account the metadata
related to the therapeutic product’s commercial potential that is
not fully utilised during the decision making within CLD activities.
One of the primary reasons this metadata is not fully harnessed is
due to the challenge of extracting valuable and useful information
from unstructured text sources. Often important information is
communicated through presentations or decisions recorded during
a meeting or in an email and is not documented correctly as
metadata. Within this work metadata was recorded on target
market size for this therapeutic drug in addition to consideration
of the available manufacturing capacity within company. The
inclusion of this information ensures the required dose and
target patient population are considered to ensure the selected
lead clone titres can successfully meet production targets given
the available manufacturing capacity. Delays in launch of
therapeutic drug can be very costly within the biopharmaceutical
sector. Therefore, it is imperative that the manufacturing capacity
required to meet market demand is considered in this decision
making as this may influence the portfolio management of the
company and needs to be considered within any budget planning
procedures by management (Farid et al., 2020).

In this work, the final step of CLD4 developed a rule based
natural language generation (NLG) algorithm that interpreted all the
structured data within the data lake and transformed this
information into a human readable report. This report helps
contextualise all this information to help the scientists make a
more informed data-driven decision when selecting the lead
clone. The template-based NLG used a Data-to-Text systems as
described in the materials and methods. A sample of the rule-based
NLG report is shown in Figure 7, which highlights which text is part
of the template, which text requires user input and which text was
automatically generated by analysing the data within the data
warehouse and using information from steps 1-3 of CLD4. This
NLG method was chosen as it is specifically designed to generate
texts from sensor data or other relevant non-linguistic data types.
Similar reports using this type of Data-to-Text include generating
weather reports from weather data (Goldberg, Driedger, and
Kittredge, 1994). The rule-based NLG aims to standardise how

the results are effectively communicated and to ensure better
transparency over this critical decision. NLG algorithms have
also been used within healthcare to improve and streamline
communication between healthcare professionals and their
patients (Cawsey, Webber, and Jones, 1997). Figure 8 includes
the final NLG report and highlights the various steps to generate
the report. The rule-based NLG is deterministic in nature and
ensures consistent and reproducible reports but could be further
expanded to utilise more sophisticated algorithms to generate more
stochastic reports that may provide more insights from the data
analysis.

4 Conclusion

The CLD4 methodology presented in this work represents the
next-generation process for lead clone selection through
advanced data consolidation, analysis and autonomous report
generation. Each of the four steps defined by CLD4 leverage value
from the high volume of data recorded throughout the CLD
operation. The CLD4 evaluated the performance of multiple
recombinant CHO cell lines producing high levels of an
antibody-peptide fusion with a known product quality issue
and recommended selection of the top clone. A key aspect of
CLD4 was the creation of a data lake that stored all productivity,
process parameter, growth, product quality and metadata
recorded by the process in a structured and accessible format.
Additionally, the newly created MICL metric accessed the performance
of 48 clones based on 20 selection criteria. Clone 8 was selected as the
lead clone based on itsMICL value of 0.89 and yielded a product titre of
5.2 g L−1 whilst meeting all the required product quality specifications.
The subsequent ML identified a strong correlation with the pH of the
culture and the end-point concentration of TSB. The correlation
indicated cell cultures operating at the higher end of pH dead-band
resulted in higher TSB concentrations in the range of 10%–15%. This
information provided highly valuable insights and recommendations
for the subsequent stability and scale-up studies. The final step of CLD4

automated the generation of a report through a NGL algorithm. This
automatically produced report aims to significantly reduce the burden
on scientists and engineers through autonomous data analysis in
addition to reducing their administrative duties by providing
customisable and configurable electronic laboratory notebook entries.
Furthermore, this methodology links the laboratory-based activities
with the long-term business objectives of the biopharmaceutical
company mitigating scale-up risks and ensuring production targets
can be met at commercialisation.
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Glossary

Agg Aggregate

CHO Chinese hamster ovary

CLD Cell line development

CLD4 Cell line development Methodology for Industry 4.0

CPP Critical process parameters

CQA Critical quality attributes

Csv Comma-separated values

DO2 Dissolved oxygen

DSP Downstream processing

EP End point

ETL Extract transform load

FAbs Fragment antibodies

Gluc Glucose

GS Glutamine synthetase

HT High throughput

HPLC High pressure liquid chromatography

Lact Lactate

mAbs Monoclonal antibodies

MCB Master cell bank

MICL Cell line manufacturability index

MSX Methionine sulfoxamine

ML Machine learning

MLR Multiple linear regression

MTP Microtitre plates

NLG Natural language generation

PCA Principal component analysis

PLS Partial least squares

S.P Set point

Std Standard deviation

TSB Trisulfide bond

VCD Viable cell density

Viab Viability
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