30,886 research outputs found

    Instability of Quark Matter Core in a Compact Newborn Neutron Star With Moderately Strong Magnetic Field

    Get PDF
    It is explicitly shown that if phase transition occurs at the core of a newborn neutron star with moderately strong magnetic field strength, which populates only the electron's Landau levels, then in the ÎČ\beta-equilibrium condition, the quark core is energetically much more unstable than the neutron matter of identical physical condition.Comment: Six pages REVTEX file, one .eps file (included

    Planar Two-particle Coulomb Interaction: Classical and Quantum Aspects

    Get PDF
    The classical and quantum aspects of planar Coulomb interactions have been studied in detail. In the classical scenario, Action Angle Variables are introduced to handle relativistic corrections, in the scheme of time-independent perturbation theory. Complications arising due to the logarithmic nature of the potential are pointed out. In the quantum case, harmonic oscillator approximations are considered and effects of the perturbations on the excited (oscillator) states have been analysed. In both the above cases, the known 3+1-dimensional analysis is carried through side by side, for a comparison with the 2+1-dimensional (planar) results.Comment: LaTex, Figures on request, e-mail:<[email protected]

    Sensitivity of the magnetic state of a spin lattice on itinerant electron orbital phase

    Full text link
    Spatially extended localized spins can interact via indirect exchange interaction through Friedel oscillations in the Fermi sea. In arrays of localized spins such interaction can lead to a magnetically ordered phase. Without external magnetic field such a phase is well understood via a "two-impurity" Kondo model. Here we employ non-equilibrium transport spectroscopy to investigate the role of the orbital phase of conduction electrons on the magnetic state of a spin lattice. We show experimentally, that even tiniest perpendicular magnetic field can influence the magnitude of the inter-spin magnetic exchange.Comment: To be published in PhysicaE EP2DS proceedin

    A new study of shower age distribution in near vertical showers by EAS air shower array

    Get PDF
    The air shower array has been developed since it started operation in 1931. The array covering an area of 900 sq m now incorporates 21 particle density sampling detectors around two muon magnetic spectrographs. The air showers are detected in the size range 10 to the 4th power to 10 to the 6th power particles. A total of 11000 showers has so far been detected. Average values of shower age have been obtained in various shower size ranges to study the dependence of shower age on shower size. The core distance dependence of shower age parameter has also been analyzed for presentation

    Interplay of disorder and geometrical frustration in doped Gadolinium Gallium Garnet

    Get PDF
    The geometrically-frustrated, triangular antiferromagnet GGG exhibits a rich mix of short-range order and isolated quantum states. We investigate the effects of up to 1% Neodymium substitution for Gallium on the ac magnetic response at temperatures below 1 K in both the linear and nonlinear regimes. Substitutional disorder actually drives the system towards a more perfectly frustrated state, apparently compensating for the effect of imperfect Gadolinium/Gallium stoichiometry, while at the same time more closely demarcating the boundaries of isolated, coherent clusters composed of hundreds of spins. Optical measurements of the local Nd environment substantiate the picture of an increased frustration index with doping.Comment: 5 pages, 5 figure

    Warm stellar matter with neutrino trapping

    Full text link
    The properties of hybrid stars formed by hadronic and quark matter in beta-equilibrium at fixed entropies are described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. In this work we include the possibility of neutrino trapped EOS and compare the star properties with the ones obtained after deleptonization, when neutrinos have already diffused out. We use the nonlinear Walecka model for the hadron matter with two different sets for the hyperon couplings and the MIT Bag and the Nambu-Jona-Lasinio models for the quark matter. The phase transition to a deconfined quark phase is investigated. Depending on the model and the parameter set used, the mixed phase may or may not exist in the EOS at high densities. The star properties are calculated for each equation of state. The maximum mass stellar configurations obtained within the NJL have larger masses than the ones obtained within the Bag model. The Bag model predicts a mixed phase in the interior of the most massive stable stars while, depending on the hyperon couplings, the NJL model predicts a mixed phase or pure quark matter. Comparing with neutrino free stars, the maximum allowed baryonic masses for protoneutron stars are ∌0.4M⊙\sim 0.4 M_\odot larger for the Bag model and ∌0.1M⊙\sim 0.1 M_\odot larger for the NJL model when neutrino trapping is imposed.Comment: 8 pages, 8 figures, 1 tabl

    Diamond degradation in hadron fields

    Full text link
    The energy dependence of the concentration of primary displacements induced by protons and pions in diamond has been calculated in the energy range 50 MeV - 50 GeV, in the frame of the Lindhard theory. The concentrations of primary displacements induced by protons and pions have completely different energy dependencies: the proton degradation is very important at low energies, and is higher than the pion one in the whole energy range investigated, with the exception of the delta33 resonance region. Diamond has been found, theoretically, to be one order of magnitude more resistant to proton and pion irradiation in respect to silicon.Comment: 7 pages, 3 figure
    • 

    corecore