4,017 research outputs found

    Important role of alkali atoms in A4C60

    Full text link
    We show that hopping via the alkali atoms plays an important role for the t1u band of A4C60 (A=K, Rb), in strong contrast to A3C60. Thus the t1u band is broadened by more than 40 % by the presence of the alkali atoms. The difference between A4C60 and A3C60 is in particular due to the less symmetric location of the alkali atoms in A4C60.Comment: 5 pages, revtex, 2 figures, submitted to Phys. Rev. B more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    Comment on "Self-Purification in Semiconductor Nanocrystals"

    Full text link
    In a recent Letter [PRL 96, 226802 (2006)], Dalpian and Chelikowsky claimed that formation energies of Mn impurities in CdSe nanocrystals increase as the size of the nanocrystal decreases, and argued that this size dependence leads to "self-purification" of small nanocrystals. They presented density-functional-theory (DFT) calculations showing a strong size dependence for Mn impurity formation energies, and proposed a general explanation. In this Comment we show that several different DFT codes, pseudopotentials, and exchange-correlation functionals give a markedly different result: We find no such size dependence. More generally, we argue that formation energies are not relevant to substitutional doping in most colloidally grown nanocrystals.Comment: 1 page, 1 figur

    Neutron diffraction in a model itinerant metal near a quantum critical point

    Full text link
    Neutron diffraction measurements on single crystals of Cr1-xVx (x=0, 0.02, 0.037) show that the ordering moment and the Neel temperature are continuously suppressed as x approaches 0.037, a proposed Quantum Critical Point (QCP). The wave vector Q of the spin density wave (SDW) becomes more incommensurate as x increases in accordance with the two band model. At xc=0.037 we have found temperature dependent, resolution limited elastic scattering at 4 incommensurate wave vectors Q=(1+/-delta_1,2, 0, 0)*2pi/a, which correspond to 2 SDWs with Neel temperatures of 19 K and 300 K. Our neutron diffraction measurements indicate that the electronic structure of Cr is robust, and that tuning Cr to its QCP results not in the suppression of antiferromagnetism, but instead enables new spin ordering due to novel nesting of the Fermi surface of Cr.Comment: Submitted as a part of proceedings of LT25 (Amsterdam 2008

    Unitary transformations for testing Bell inequalities

    Full text link
    It is shown that optical experimental tests of Bell inequality violations can be described by SU(1,1) transformations of the vacuum state, followed by photon coincidence detections. The set of all possible tests are described by various SU(1,1) subgroups of Sp(8,R\Bbb R). In addition to establishing a common formalism for physically distinct Bell inequality tests, the similarities and differences of post--selected tests of Bell inequality violations are also made clear. A consequence of this analysis is that Bell inequality tests are performed on a very general version of SU(1,1) coherent states, and the theoretical violation of the Bell inequality by coincidence detection is calculated and discussed. This group theoretical approach to Bell states is relevant to Bell state measurements, which are performed, for example, in quantum teleportation.Comment: 3 figure

    Research in the effective implementation of guidance computers with large scale arrays Interim report

    Get PDF
    Functional logic character implementation in breadboard design of NASA modular compute

    Neutron, electron and X-ray scattering investigation of Cr1-xVx near Quantum Criticality

    Full text link
    The weakness of electron-electron correlations in the itinerant antiferromagnet Cr doped with V has long been considered the reason that neither new collective electronic states or even non Fermi liquid behaviour are observed when antiferromagnetism in Cr1−x_{1-x}Vx_{x} is suppressed to zero temperature. We present the results of neutron and electron diffraction measurements of several lightly doped single crystals of Cr1−x_{1-x}Vx_{x} in which the archtypal spin density wave instability is progressively suppressed as the V content increases, freeing the nesting-prone Fermi surface for a new striped charge instability that occurs at xc_{c}=0.037. This novel nesting driven instability relieves the entropy accumulation associated with the suppression of the spin density wave and avoids the formation of a quantum critical point by stabilising a new type of charge order at temperatures in excess of 400 K. Restructuring of the Fermi surface near quantum critical points is a feature found in materials as diverse as heavy fermions, high temperature copper oxide superconductors and now even elemental metals such as Cr.Comment: 6 pages, 6 figures. Accepted to Physical Review

    Noise and Correlations in a Spatial Population Model with Cyclic Competition

    Get PDF
    Noise and spatial degrees of freedom characterize most ecosystems. Some aspects of their influence on the coevolution of populations with cyclic interspecies competition have been demonstrated in recent experiments [e.g. B. Kerr et al., Nature {\bf 418}, 171 (2002)]. To reach a better theoretical understanding of these phenomena, we consider a paradigmatic spatial model where three species exhibit cyclic dominance. Using an individual-based description, as well as stochastic partial differential and deterministic reaction-diffusion equations, we account for stochastic fluctuations and spatial diffusion at different levels, and show how fascinating patterns of entangled spirals emerge. We rationalize our analysis by computing the spatio-temporal correlation functions and provide analytical expressions for the front velocity and the wavelength of the propagating spiral waves.Comment: 4 pages of main text, 3 color figures + 2 pages of supplementary material (EPAPS Document). Final version for Physical Review Letter
    • …
    corecore