3,556 research outputs found

    Precision orbit computations for an operational environment

    Get PDF
    Taking advantage of the improvements to the Earth's gravitation field and tracking station coordinates, an orbital computational consistency of the order of 5 meters was achieved for total position differences between orbital solutions for the Seasat and GEOS-3. The main source of error in these solutions was in the mathematical models that are required to generate these results, i.e., gravitation, atmospheric drag, etc. Different Earth gravitation fields and tracking coordinates were analyzed and evaluated in obtaining these computational results. Comparisons and evaluations of the Seasat results were obtained in terms of different solution types such as the Doppler only, Laser only, Doppler and Laser, etc. Other investigation using the Seasat data were made in order to determine their effect on the computational results at this particular level of consistency

    Orbit determination support of the Ocean Topography Experiment (TOPEX)/Poseidon operational orbit

    Get PDF
    The Ocean Topography Experiment (TOPEX/Poseidon) mission is designed to determine the topography of the Earth's sea surface over a 3-year period, beginning shortly after launch in July 1992. TOPEX/Poseidon is a joint venture between the United States National Aeronautics and Space Administration (NASA) and the French Centre Nationale d'Etudes Spatiales. The Jet Propulsion Laboratory is NASA's TOPEX/Poseidon project center. The Tracking and Data Relay Satellite System (TDRSS) will nominally be used to support the day-to-day orbit determination aspects of the mission. Due to its extensive experience with TDRSS tracking data, the NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) will receive and process TDRSS observational data. To fulfill the scientific goals of the mission, it is necessary to achieve and maintain a very precise orbit. The most stringent accuracy requirements are associated with planning and evaluating orbit maneuvers, which will place the spacecraft in its mission orbit and maintain the required ground track. To determine if the FDF can meet the TOPEX/Poseidon maneuver accuracy requirements, covariance analysis was undertaken with the Orbit Determination Error Analysis System (ODEAS). The covariance analysis addressed many aspects of TOPEX/Poseidon orbit determination, including arc length, force models, and other processing options. The most recent analysis has focused on determining the size of the geopotential field necessary to meet the maneuver support requirements. Analysis was undertaken with the full 50 x 50 Goddard Earth Model (GEM) T3 field as well as smaller representations of this model

    Flight dynamics facility operational orbit determination support for the ocean topography experiment

    Get PDF
    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation

    Density functional study of the adsorption of K on the Ag(111) surface

    Full text link
    Full-potential gradient corrected density functional calculations of the adsorption of potassium on the Ag(111) surface have been performed. The considered structures are Ag(111) (root 3 x root 3) R30degree-K and Ag(111) (2 x 2)-K. For the lower coverage, fcc, hcp and bridge site; and for the higher coverage all considered sites are practically degenerate. Substrate rumpling is most important for the top adsorption site. The bond length is found to be nearly identical for the two coverages, in agreement with recent experiments. Results from Mulliken populations, bond lengths, core level shifts and work functions consistently indicate a small charge transfer from the potassium atom to the substrate, which is slightly larger for the lower coverage.Comment: to appear in Phys Rev

    Comparison of ERBS orbit determination accuracy using batch least-squares and sequential methods

    Get PDF
    The Flight Dynamics Div. (FDD) at NASA-Goddard commissioned a study to develop the Real Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination of spacecraft on a DOS based personal computer (PC). An overview is presented of RTOD/E capabilities and the results are presented of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOS/E on a PC with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. RTOD/E was used to perform sequential orbit determination for the Earth Radiation Budget Satellite (ERBS), and the Goddard Trajectory Determination System (GTDS) was used to perform the batch least squares orbit determination. The estimated ERBS ephemerides were obtained for the Aug. 16 to 22, 1989, timeframe, during which intensive TDRSS tracking data for ERBS were available. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for ERBS; the solution differences were less than 40 meters after the filter had reached steady state

    Limits on τ lepton-flavor violating decays into three charged leptons

    Get PDF
    A search for the neutrinoless, lepton-flavor violating decay of the τ lepton into three charged leptons has been performed using an integrated luminosity of 468  fb^(-1) collected with the BABAR detector at the PEP-II collider. In all six decay modes considered, the numbers of events found in data are compatible with the background expectations. Upper limits on the branching fractions are set in the range (1.8–3.3)×10^(-8) at 90% confidence level

    Measurements of the semileptonic decays B[overbar]→Dℓν[overbar] and B[overbar]→D^*ℓν[overbar] using a global fit to DXℓν[overbar] final states

    Get PDF
    Semileptonic B[overbar] decays to DXℓν[overbar](ℓ=e or μ) are selected by reconstructing D^0ℓ and D^+ℓ combinations from a sample of 230×10^6 Υ(4S)→BB[overbar] decays recorded with the BABAR detector at the PEP-II e^+e^- collider at SLAC. A global fit to these samples in a three-dimensional space of kinematic variables is used to determine the branching fractions B(B^-→D^0ℓν[overbar])=(2.34±0.03±0.13)% and B(B^-→D^(*0)ℓν[overbar])=(5.40±0.02±0.21)% where the errors are statistical and systematic, respectively. The fit also determines form-factor parameters in a parametrization based on heavy quark effective theory, resulting in ρ_D^2=1.20±0.04±0.07 for B[overbar]→Dℓν[overbar] and ρ_(D*)^2=1.22±0.02±0.07 for B[overbar]→D^*ℓν[overbar]. These values are used to obtain the product of the Cabibbo-Kobayashi-Maskawa matrix element |V_(cb)| times the form factor at the zero recoil point for both B[overbar]→Dℓν[overbar] decays, G(1)|V_(cb)|=(43.1±0.8±2.3)×10^(-3), and for B[overbar]→D^*ℓν[overbar] decays, F(1)|V_(cb)|=(35.9±0.2±1.2)×10^(-3)
    corecore