58 research outputs found
Pulsed squeezed vacuum characterization without homodyning
Direct photon detection is experimentally implemented to measure the
squeezing and purity of a single-mode squeezed vacuum state without an
interferometric homodyne detection. Following a recent theoretical proposal
[arXiv quant-ph/0311119], the setup only requires a tunable beamsplitter and a
single-photon detector to fully characterize the generated Gaussian states. The
experimental implementation of this procedure is discussed and compared with
other reference methods.Comment: 8 pages, 7 figure
Implementation of a Nondeterministic Optical Noiseless Amplifier
International audienceQuantum mechanics imposes that any amplifier that works independently on the phase of the input signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted into unitarity and linearity of quantum evolution. A possible way to circumvent this limitation is to interrupt such evolution via a measurement, providing a random outcome able to herald a successful - and noiseless - amplification event. Here we show a successful realisation of such an approach; we perform a full characterization of an amplified coherent state using quantum homodyne tomography, and observe a strong heralded amplification, with about 6dB gain and a noise level significantly smaller than the minimal allowed for any ordinary phase-independent device
Maximal Violation of Bell Inequalities using Continuous Variables Measurements
We propose a whole family of physical states that yield a violation of the
Bell CHSH inequality arbitrarily close to its maximum value, when using
quadrature phase homodyne detection. This result is based on a new binning
process called root binning, that is used to transform the continuous variables
measurements into binary results needed for the tests of quantum mechanics
versus local realistic theories. A physical process in order to produce such
states is also suggested. The use of high-efficiency spacelike separated
homodyne detections with these states and this binning process would result in
a conclusive loophole-free test of quantum mechanics.Comment: 7 pages, 5 figures, to appear in PRA in a slightly different versio
Single Photons on Pseudo-Demand from Stored Parametric Down-Conversion
We describe the results of a parametric down-conversion experiment in which
the detection of one photon of a pair causes the other photon to be switched
into a storage loop. The stored photon can then be switched out of the loop at
a later time chosen by the user, providing a single photon for potential use in
a variety of quantum information processing applications. Although the stored
single photon is only available at periodic time intervals, those times can be
chosen to match the cycle time of a quantum computer by using pulsed
down-conversion. The potential use of the storage loop as a photonic quantum
memory device is also discussed.Comment: 8 pages, 7 Figs., RevTe
Atomic diffraction from nanostructured optical potentials
We develop a versatile theoretical approach to the study of cold-atom
diffractive scattering from light-field gratings by combining calculations of
the optical near-field, generated by evanescent waves close to the surface of
periodic nanostructured arrays, together with advanced atom wavepacket
propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.
Quantum key distribution using gaussian-modulated coherent states
Quantum continuous variables are being explored as an alternative means to
implement quantum key distribution, which is usually based on single photon
counting. The former approach is potentially advantageous because it should
enable higher key distribution rates. Here we propose and experimentally
demonstrate a quantum key distribution protocol based on the transmission of
gaussian-modulated coherent states (consisting of laser pulses containing a few
hundred photons) and shot-noise-limited homodyne detection; squeezed or
entangled beams are not required. Complete secret key extraction is achieved
using a reverse reconciliation technique followed by privacy amplification. The
reverse reconciliation technique is in principle secure for any value of the
line transmission, against gaussian individual attacks based on entanglement
and quantum memories. Our table-top experiment yields a net key transmission
rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per
second for a line with losses of 3.1 dB. We anticipate that the scheme should
remain effective for lines with higher losses, particularly because the present
limitations are essentially technical, so that significant margin for
improvement is available on both the hardware and software.Comment: 8 pages, 4 figure
Single-particle nonlocality and entanglement with the vacuum
We propose a single-particle experiment that is equivalent to the
conventional two-particle experiment used to demonstrate a violation of Bell's
inequalities. Hence, we argue that quantum mechanical nonlocality can be
demonstrated by single-particle states. The validity of such a claim has been
discussed in the literature, but without reaching a clear consensus. We show
that the disagreement can be traced to what part of the total state of the
experiment one assigns to the (macroscopic) measurement apparatus. However,
with a conventional and legitimate interpretation of the measurement process
one is led to the conclusion that even a single particle can show nonlocal
properties.Comment: 6 pages, 5 figure
Probabilistic Quantum Logic Operations Using Polarizing Beam Splitters
It has previously been shown that probabilistic quantum logic operations can
be performed using linear optical elements, additional photons (ancilla), and
post-selection based on the output of single-photon detectors. Here we describe
the operation of several quantum logic operations of an elementary nature,
including a quantum parity check and a quantum encoder, and we show how they
can be combined to implement a controlled-NOT (CNOT) gate. All of these gates
can be constructed using polarizing beam splitters that completely transmit one
state of polarization and totally reflect the orthogonal state of polarization,
which allows a simple explanation of each operation. We also describe a
polarizing beam splitter implementation of a CNOT gate that is closely
analogous to the quantum teleportation technique previously suggested by
Gottesman and Chuang [Nature 402, p.390 (1999)]. Finally, our approach has the
interesting feature that it makes practical use of a quantum-eraser technique.Comment: 9 pages, RevTex; Submitted to Phys. Rev. A; additional references
inlcude
A single-photon transistor using nano-scale surface plasmons
It is well known that light quanta (photons) can interact with each other in
nonlinear media, much like massive particles do, but in practice these
interactions are usually very weak. Here we describe a novel approach to
realize strong nonlinear interactions at the single-photon level. Our method
makes use of recently demonstrated efficient coupling between individual
optical emitters and tightly confined, propagating surface plasmon excitations
on conducting nanowires. We show that this system can act as a nonlinear
two-photon switch for incident photons propagating along the nanowire, which
can be coherently controlled using quantum optical techniques. As a novel
application, we discuss how the interaction can be tailored to create a
single-photon transistor, where the presence or absence of a single incident
photon in a ``gate'' field is sufficient to completely control the propagation
of subsequent ``signal'' photons.Comment: 20 pages, 4 figure
Quantum Cryptography
Quantum cryptography could well be the first application of quantum mechanics
at the individual quanta level. The very fast progress in both theory and
experiments over the recent years are reviewed, with emphasis on open questions
and technological issues.Comment: 55 pages, 32 figures; to appear in Reviews of Modern Physic
- …