58 research outputs found

    Pulsed squeezed vacuum characterization without homodyning

    Full text link
    Direct photon detection is experimentally implemented to measure the squeezing and purity of a single-mode squeezed vacuum state without an interferometric homodyne detection. Following a recent theoretical proposal [arXiv quant-ph/0311119], the setup only requires a tunable beamsplitter and a single-photon detector to fully characterize the generated Gaussian states. The experimental implementation of this procedure is discussed and compared with other reference methods.Comment: 8 pages, 7 figure

    Implementation of a Nondeterministic Optical Noiseless Amplifier

    Get PDF
    International audienceQuantum mechanics imposes that any amplifier that works independently on the phase of the input signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted into unitarity and linearity of quantum evolution. A possible way to circumvent this limitation is to interrupt such evolution via a measurement, providing a random outcome able to herald a successful - and noiseless - amplification event. Here we show a successful realisation of such an approach; we perform a full characterization of an amplified coherent state using quantum homodyne tomography, and observe a strong heralded amplification, with about 6dB gain and a noise level significantly smaller than the minimal allowed for any ordinary phase-independent device

    Maximal Violation of Bell Inequalities using Continuous Variables Measurements

    Get PDF
    We propose a whole family of physical states that yield a violation of the Bell CHSH inequality arbitrarily close to its maximum value, when using quadrature phase homodyne detection. This result is based on a new binning process called root binning, that is used to transform the continuous variables measurements into binary results needed for the tests of quantum mechanics versus local realistic theories. A physical process in order to produce such states is also suggested. The use of high-efficiency spacelike separated homodyne detections with these states and this binning process would result in a conclusive loophole-free test of quantum mechanics.Comment: 7 pages, 5 figures, to appear in PRA in a slightly different versio

    Single Photons on Pseudo-Demand from Stored Parametric Down-Conversion

    Full text link
    We describe the results of a parametric down-conversion experiment in which the detection of one photon of a pair causes the other photon to be switched into a storage loop. The stored photon can then be switched out of the loop at a later time chosen by the user, providing a single photon for potential use in a variety of quantum information processing applications. Although the stored single photon is only available at periodic time intervals, those times can be chosen to match the cycle time of a quantum computer by using pulsed down-conversion. The potential use of the storage loop as a photonic quantum memory device is also discussed.Comment: 8 pages, 7 Figs., RevTe

    Atomic diffraction from nanostructured optical potentials

    Full text link
    We develop a versatile theoretical approach to the study of cold-atom diffractive scattering from light-field gratings by combining calculations of the optical near-field, generated by evanescent waves close to the surface of periodic nanostructured arrays, together with advanced atom wavepacket propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.

    Quantum key distribution using gaussian-modulated coherent states

    Full text link
    Quantum continuous variables are being explored as an alternative means to implement quantum key distribution, which is usually based on single photon counting. The former approach is potentially advantageous because it should enable higher key distribution rates. Here we propose and experimentally demonstrate a quantum key distribution protocol based on the transmission of gaussian-modulated coherent states (consisting of laser pulses containing a few hundred photons) and shot-noise-limited homodyne detection; squeezed or entangled beams are not required. Complete secret key extraction is achieved using a reverse reconciliation technique followed by privacy amplification. The reverse reconciliation technique is in principle secure for any value of the line transmission, against gaussian individual attacks based on entanglement and quantum memories. Our table-top experiment yields a net key transmission rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per second for a line with losses of 3.1 dB. We anticipate that the scheme should remain effective for lines with higher losses, particularly because the present limitations are essentially technical, so that significant margin for improvement is available on both the hardware and software.Comment: 8 pages, 4 figure

    Single-particle nonlocality and entanglement with the vacuum

    Get PDF
    We propose a single-particle experiment that is equivalent to the conventional two-particle experiment used to demonstrate a violation of Bell's inequalities. Hence, we argue that quantum mechanical nonlocality can be demonstrated by single-particle states. The validity of such a claim has been discussed in the literature, but without reaching a clear consensus. We show that the disagreement can be traced to what part of the total state of the experiment one assigns to the (macroscopic) measurement apparatus. However, with a conventional and legitimate interpretation of the measurement process one is led to the conclusion that even a single particle can show nonlocal properties.Comment: 6 pages, 5 figure

    Probabilistic Quantum Logic Operations Using Polarizing Beam Splitters

    Full text link
    It has previously been shown that probabilistic quantum logic operations can be performed using linear optical elements, additional photons (ancilla), and post-selection based on the output of single-photon detectors. Here we describe the operation of several quantum logic operations of an elementary nature, including a quantum parity check and a quantum encoder, and we show how they can be combined to implement a controlled-NOT (CNOT) gate. All of these gates can be constructed using polarizing beam splitters that completely transmit one state of polarization and totally reflect the orthogonal state of polarization, which allows a simple explanation of each operation. We also describe a polarizing beam splitter implementation of a CNOT gate that is closely analogous to the quantum teleportation technique previously suggested by Gottesman and Chuang [Nature 402, p.390 (1999)]. Finally, our approach has the interesting feature that it makes practical use of a quantum-eraser technique.Comment: 9 pages, RevTex; Submitted to Phys. Rev. A; additional references inlcude

    A single-photon transistor using nano-scale surface plasmons

    Full text link
    It is well known that light quanta (photons) can interact with each other in nonlinear media, much like massive particles do, but in practice these interactions are usually very weak. Here we describe a novel approach to realize strong nonlinear interactions at the single-photon level. Our method makes use of recently demonstrated efficient coupling between individual optical emitters and tightly confined, propagating surface plasmon excitations on conducting nanowires. We show that this system can act as a nonlinear two-photon switch for incident photons propagating along the nanowire, which can be coherently controlled using quantum optical techniques. As a novel application, we discuss how the interaction can be tailored to create a single-photon transistor, where the presence or absence of a single incident photon in a ``gate'' field is sufficient to completely control the propagation of subsequent ``signal'' photons.Comment: 20 pages, 4 figure

    Quantum Cryptography

    Get PDF
    Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.Comment: 55 pages, 32 figures; to appear in Reviews of Modern Physic
    • …
    corecore