40 research outputs found

    Size Segregation and Convection of Granular Mixtures Almost Completely Packed in the Rotating Thin Box

    Full text link
    Size segregation of granular mixtures which are almost completely packed in a rotating drum is discussed with an effective simulation and a brief analysis. Instead of a 3D drum, we simulate 2D rotating thin box which is almost completely packed with granular mixtures. The phase inversion of radially segregated pattern which was found in a 3D experiment are qualitatively reproduced with this simulation, and a brief analysis is followed. Moreover in our simulation, a global convection appears after radial segregation pattern is formed, and this convection induces axially segregated pattern.Comment: 9 pages, 5 figures, PACS number(s): 45.70.-n, 45.70.M

    Puzzle based teaching versus traditional instruction in electrocardiogram interpretation for medical students – a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most medical professionals are expected to possess basic electrocardiogram (EKG) interpretation skills. But, published data suggests that residents' and physicians' EKG interpretation skills are suboptimal. Learning styles differ among medical students; individualization of teaching methods has been shown to be viable and may result in improved learning. Puzzles have been shown to facilitate learning in a relaxed environment. The objective of this study was to assess efficacy of teaching puzzle in EKG interpretation skills among medical students.</p> <p>Methods</p> <p>This is a reader blinded crossover trial. Third year medical students from College of Human Medicine, Michigan State University participated in this study. Two groups (n = 9) received two traditional EKG interpretation skills lectures followed by a standardized exam and two extra sessions with the teaching puzzle and a different exam. Two other groups (n = 6) received identical courses and exams with the puzzle session first followed by the traditional teaching. EKG interpretation scores on final test were used as main outcome measure.</p> <p>Results</p> <p>The average score after only traditional teaching was 4.07 ± 2.08 while after only the puzzle session was 4.04 ± 2.36 (p = 0.97). The average improvement after the traditional session was followed up with a puzzle session was 2.53 ± 1.94 while the average improvement after the puzzle session was followed with the traditional session was 2.08 ± 1.73 (p = 0.67). The final EKG exam score for this cohort (n = 15) was 84.1 compared to 86.6 (p = 0.22) for a comparable sample of medical students (n = 15) at a different campus.</p> <p>Conclusion</p> <p>Teaching EKG interpretation with puzzles is comparable to traditional teaching and may be particularly useful for certain subgroups of students. Puzzle session are more interactive and relaxing, and warrant further investigations on larger scale.</p

    PDZ domains and their binding partners: structure, specificity, and modification

    Get PDF
    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes

    TRP Channels: Their Function and Potentiality as Drug Targets

    Full text link

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    PDE inhibition in distinct cell types to reclaim the balance of synaptic plasticity

    No full text
    Synapses are the functional units of the brain. They form specific contact points that drive neuronal communication and are highly plastic in their strength, density, and shape. A carefully orchestrated balance between synaptogenesis and synaptic pruning, i.e., the elimination of weak or redundant synapses, ensures adequate synaptic density. An imbalance between these two processes lies at the basis of multiple neuropathologies. Recent evidence has highlighted the importance of glia-neuron interactions in the synaptic unit, emphasized by glial phagocytosis of synapses and local excretion of inflammatory mediators. These findings warrant a closer look into the molecular basis of cell-signaling pathways in the different brain cells that are related to synaptic plasticity. In neurons, intracellular second messengers, such as cyclic guanosine or adenosine monophosphate (cGMP and cAMP, respectively), are known mediators of synaptic homeostasis and plasticity. Increased levels of these second messengers in glial cells slow down inflammation and neurodegenerative processes. These multi-faceted effects provide the opportunity to counteract excessive synapse loss by targeting cGMP and cAMP pathways in multiple cell types. Phosphodiesterases (PDEs) are specialized degraders of these second messengers, rendering them attractive targets to combat the detrimental effects of neurological disorders. Cellular and subcellular compartmentalization of the specific isoforms of PDEs leads to divergent downstream effects for these enzymes in the various central nervous system resident cell types. This review provides a detailed overview on the role of PDEs and their inhibition in the context of glia-neuron interactions in different neuropathologies characterized by synapse loss. In doing so, it provides a framework to support future research towards finding combinational therapy for specific neuropathologies
    corecore